留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边界节点法计算二维瞬态热传导问题

师晋红 傅卓佳 陈文

师晋红, 傅卓佳, 陈文. 边界节点法计算二维瞬态热传导问题[J]. 应用数学和力学, 2014, 35(2): 111-120. doi: 10.3879/j.issn.1000-0887.2014.02.001
引用本文: 师晋红, 傅卓佳, 陈文. 边界节点法计算二维瞬态热传导问题[J]. 应用数学和力学, 2014, 35(2): 111-120. doi: 10.3879/j.issn.1000-0887.2014.02.001
SHI Jin-hong, FU Zhuo-jia, CHEN Wen. Boundary Knot Method for 2D Transient Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2014, 35(2): 111-120. doi: 10.3879/j.issn.1000-0887.2014.02.001
Citation: SHI Jin-hong, FU Zhuo-jia, CHEN Wen. Boundary Knot Method for 2D Transient Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2014, 35(2): 111-120. doi: 10.3879/j.issn.1000-0887.2014.02.001

边界节点法计算二维瞬态热传导问题

doi: 10.3879/j.issn.1000-0887.2014.02.001
基金项目: 国家重点基础研究发展计划(973计划)(2010CB832702); 国家杰出青年基金(11125208); 国家自然科学基金(11372097;11302069); 高等学校学科创新引智计划(“111”计划)(B12032)
详细信息
    作者简介:

    师晋红(1989—),女,山西人,硕士生(E-mail: shijhhhu@163.com)

  • 中图分类号: O241.82;O343.6

Boundary Knot Method for 2D Transient Heat Conduction Problems

Funds: The National Basic Research Program of China (973 Program)(2010CB832702); The National Science Fund for Distinguished Young Scholars of China(11125208); The National Natural Science Foundation of China(11372097;11302069)
  • 摘要: 采用边界节点法(BKM)结合双重互易法(DRM)求解二维瞬态热传导问题.采用差分格式处理时间变量,可将原瞬态热传导方程转化为一系列非齐次修正的Helmholtz方程.随后,方程的解可分为特解和齐次解两部分计算,引入双重互易法在区域内部配点求解方程的特解,采用边界节点法仅需边界配点求解方程的齐次解.给出的数值算例显示该方法计算精度高,适用性好,具有很好的稳定性和收敛性,适合求解瞬态热传导问题.
  • [1] Burris K W, Beardsley M B, Chuzhoy L. Component having a functionally graded material coating for improved performance[P]. US Patent: 6087022, 2000-7-11.
    [2] Renner E. Thermal engine[P]. US Patent: 3937019, 1976-2-10.
    [3] Bruch J C, Zyvoloski G. Transient two-dimensional heat conduction problems solved by the finite element method[J]. International Journal for Numerical Methods in Engineering,1974, 8(3): 481-494.
    [4] Blobner J, Biaecki R A, Kuhn G. Transient non-linear heat conduction-radiation problems—a boundary element formulation[J]. International Journal for Numerical Methods in Engineering,1999, 46(11): 1865-1882.
    [5] Li Q H, Chen S S, Kou G X. Transient heat conduction analysis using the MLPG method and modified precise time step integration method[J]. Journal of Computational Physics,2011, 230(7): 2736-2750.
    [6] Valtchev S S, Roberty N C. A time-marching MFS scheme for heat conduction problems[J]. Engineering Analysis With Boundary Elements,2008, 32(6): 480-493.
    [7] Jirousek J, Qin Q H. Application of hybrid-Trefftz element approach to transient heat conduction analysis[J]. Computers & Structures,1996, 58(1): 195-201.
    [8] Brebbia C A, Telles J C F, Wrobel L C. Boundary Element Techniques: Theory and Applications in Engineering [M]. Berlin: Springer-Verlag, 1984.
    [9] 欧阳华江. 广义热传导方程有限元算法的计算准则[J]. 应用数学和力学, 1992, 13(6): 563-571.(OUYANG Hua-jiang. Criteria for finite element algorithm of generalized heat conduction equation[J]. Applied Mathematics and Mechanics,1992, 13(6): 563-571.(in Chinese))
    [10] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.(ZHANG Xiong, LIU Yan. Meshless Methods [M]. Beijing: Tsinghua University Press, 2004.(in Chinese))
    [11] Wang H, Qin Q, Kang Y. A meshless model for transient heat conduction in functionally graded materials[J]. Computational Mechanics,2006, 38(1): 51-60.
    [12] Fu Z J, Chen W, Qin Q H. Three boundary meshless methods for heat conduction analysis in nonlinear FGMs with Kirchhoff and Laplace transformation[J]. Advances in Applied Mathematics and Mechanics,2012, 4(5): 519-542.
    [13] Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems[J]. Advances in Computational Mathematics,1998, 9(1/2): 69-95.
    [14] Chen W, Tanaka M. A meshless, integration-free, and boundary-only RBF technique[J].Computers & Mathematics With Applications,2002, 43(3): 379-391.
    [15] Fu Z J, Chen W, Qin Q H. Boundary knot method for heat conduction in nonlinear functionally graded material[J]. Engineering Analysis With Boundary Elements,2011, 35(5): 729-734.
    [16] Chen W, Hon Y C. Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems[J]. Computer Methods in Applied Mechanics and Engineering,2003, 192(15): 1859-1875.
    [17] Hon Y C, Chen W. Boundary knot method for 2D and 3D Helmholtz and convection-diffusion problems under complicated geometry[J]. International Journal for Numerical Methods in Engineering,2003, 56(13): 1931-1948.
    [18] Jin B, Zheng Y. Boundary knot method for some inverse problems associated with the Helmholtz equation[J]. International Journal for Numerical Methods in Engineering,2005, 62(12): 1636-1651.
    [19] Partridge P W, Brebbia C A, Wrobel L C. The Dual Reciprocity Boundary Element Method [M]. Southampton: Computational Mechanics Publications, 1992.
    [20] Biaecki R A, Jurgas'P, Kuhn G. Dual reciprocity BEM without matrix inversion for transient heat conduction[J]. Engineering Analysis With Boundary Elements,2002, 26(3): 227-236.
    [21] Bulgakov V, Arler B, Kuhn G. Iterative solution of systems of equations in the dual reciprocity boundary element method for the diffusion equation[J]. International Journal for Numerical Methods in Engineering,1998, 43(4): 713-732.
    [22] Chapko R, Kress R. Rothe’s method for the heat equation and boundary integral equations[J]. Journal of Integral Equations and Applications,1997, 9(1): 47-69.
    [23] Golberg M. Recent developments in the numerical evaluation of particular solutions in the boundary element method[J]. Applied Mathematics and Computation,1996, 75(1): 91-101.
    [24] Chen C, Rashed Y F. Evaluation of thin plate spline based particular solutions for Helmholtz-type operators for the DRM[J]. Mechanics Research Communications,1998, 25(2): 195-201.
  • 加载中
计量
  • 文章访问数:  1873
  • HTML全文浏览量:  251
  • PDF下载量:  1279
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 修回日期:  2013-11-19
  • 刊出日期:  2014-02-15

目录

    /

    返回文章
    返回