留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非饱和土壤水流问题的降阶外推仿真模型

腾飞 罗振东

腾飞, 罗振东. 非饱和土壤水流问题的降阶外推仿真模型[J]. 应用数学和力学, 2014, 35(2): 148-161. doi: 10.3879/j.issn.1000-0887.2014.02.004
引用本文: 腾飞, 罗振东. 非饱和土壤水流问题的降阶外推仿真模型[J]. 应用数学和力学, 2014, 35(2): 148-161. doi: 10.3879/j.issn.1000-0887.2014.02.004
TENG Fei, LUO Zhen-dong. A Reduced-Order Extrapolating Simulation Model for Unsaturated Soil Water Flow Problem[J]. Applied Mathematics and Mechanics, 2014, 35(2): 148-161. doi: 10.3879/j.issn.1000-0887.2014.02.004
Citation: TENG Fei, LUO Zhen-dong. A Reduced-Order Extrapolating Simulation Model for Unsaturated Soil Water Flow Problem[J]. Applied Mathematics and Mechanics, 2014, 35(2): 148-161. doi: 10.3879/j.issn.1000-0887.2014.02.004

非饱和土壤水流问题的降阶外推仿真模型

doi: 10.3879/j.issn.1000-0887.2014.02.004
基金项目: 国家自然科学基金(11271127);贵州省教育厅自然科学研究项目(黔教合KY字[2013]207)
详细信息
    作者简介:

    腾飞(1986—),女,吉林人,硕士,讲师(E-mail: tengfeikl@126.com)

  • 中图分类号: O242.21

A Reduced-Order Extrapolating Simulation Model for Unsaturated Soil Water Flow Problem

Funds: The National Natural Science Foundation of China(11271127)
  • 摘要: 利用Crank-Nicolson有限体积元方法和特征投影分解方法建立二维非饱和土壤水流问题的一种很少自由度、精度足够高的降阶外推仿真模型,并给出这种降阶外推仿真模型的降阶近似解误差估计和算法实现.最后用数值例子说明数值结果与理论结果相吻合,并阐明这种降阶外推仿真模型的优越性.
  • [1] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1998. (LEI Zhi-dong, YANG Shi-xiu, XIE Sen-chuan. Soil Water Dynamics [M]. Beijing: Tsinghua University Press, 1988. (in Chinese))
    [2] 谢正辉, 曾庆存, 戴永久, 王斌. 有限元集中质量法在非饱和土壤水流中的应用[J]. 气候与环境研究, 1998,3(1): 73-81.(XIE Zheng-hui, ZENG Qing-cun, DAI Yong-jiu, WANG Bin. An application of the mass-lumped finite element method to the unsaturated soil water problem[J]. Studies in Climate and Environment,1998,3(1): 73-81.(in Chinese))
    [3] 李焕荣, 罗振东. 二维非饱和土壤水分运动问题的半离散有限体积元模拟[J]. 计算数学, 2011,33(1): 57-68.(LI Huan-rong, LUO Zhen-dong. Semi-discrete finite volume element simulation for two-dimensional unsaturated soil water flow problem[J]. Mathematica Numerica Sinica,2011,33(1): 57-68.(in Chinese))
    [4] Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations— Numerical Analysis of Finite Volume Methods [M]. New York: Marcel Dekker Inc, 2000.
    [5] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry [M]. Cambridge: Cambridge University Press, 1996.
    [6] Fukunaga K. Introduction to Statistical Recognition [M]. New York: Academic Press, 1990.
    [7] Jolliffe I T. Principal Component Analysis [M]. 2nd ed. New York, Berlin, Heidelberg: Springer-Verlag, 2002.
    [8] Selten F M. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model[J]. Journal of the Atmospheric Sciences,1997,54(16): 2099-2114.
    [9] Sirovich L. Turbulence and the dynamics of coherent structures: Ⅰ-coherent structures; Ⅱ- symmetries and transformations; Ⅲ-dynamics and scaling[J]. Quarterly of Applied Mathematics,1987,45(3): 561-571; 573-590.
    [10] LUO Zhen-dong, XIE Zheng-hui, SHANG Yue-qiang, CHEN Jing. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations[J]. Journal of Computational and Applied Mathematics,2011,235(8): 2098-2111.
    [11] LUO Zhen-dong, LI Hong, ZHOU Yan-jie, HUANG Xiao-ming. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J]. Journal of Mathematical Analysis and Applications,2012,385(1): 310-321.
    [12] LUO Zhen-dong, LI Hong, SUN Ping. A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations[J]. Applied Mathematics and Computation,2013,219(11): 5887-5900.
    [13] 罗振东, 李宏, 陈静. 非饱和土壤水流问题基于POD方法的降阶有限体积元格式及外推算法实现[J]. 中国科学A辑: 数学, 2012,42(12): 1263-1280.(LUO Zhen-dong, LI Hong, CHEN Jing. A reduced-order finite volume element formulation based on POD method and implementation of its extrapolation algorithm for unsaturated soil water flow equation[J]. Sci Sin Math,2012,42(12): 1263-1280.(in Chinese))
    [14] Adams R A. Sobolev Spaces [M]. New York: Academic Press, 1975.
    [15] 罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.(LUO Zhen-dong. Mixed Finite Element Methods and Applications [M]. Beijing: Science Press, 2006.(in Chinese))
    [16] Ciarlet P G. The Finite Element Method for Elliptic Problems [M]. Philadelphia: Society for Industrial and Applied Mathematic, 2002.
    [17] Rudin W. Functional and Analysis [M]. 2nd ed. New York: McGraw-Hill Companies, Inc, 1973.
  • 加载中
计量
  • 文章访问数:  1195
  • HTML全文浏览量:  104
  • PDF下载量:  980
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-02
  • 修回日期:  2013-12-25
  • 刊出日期:  2014-02-15

目录

    /

    返回文章
    返回