留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两相饱和介质层与单相介质层应力-位移函数的传递与退化

丁伯阳 陈樟龙 徐庭

丁伯阳, 陈樟龙, 徐庭. 两相饱和介质层与单相介质层应力-位移函数的传递与退化[J]. 应用数学和力学, 2014, 35(2): 162-180. doi: 10.3879/j.issn.1000-0887.2014.02.005
引用本文: 丁伯阳, 陈樟龙, 徐庭. 两相饱和介质层与单相介质层应力-位移函数的传递与退化[J]. 应用数学和力学, 2014, 35(2): 162-180. doi: 10.3879/j.issn.1000-0887.2014.02.005
DING Bo-yang, CHEN Zhang-long, XU Ting. Degeneration and Tranfer of the Displacement-Stress Functions From Poroelastic Layered Media to Elastic Layered Media[J]. Applied Mathematics and Mechanics, 2014, 35(2): 162-180. doi: 10.3879/j.issn.1000-0887.2014.02.005
Citation: DING Bo-yang, CHEN Zhang-long, XU Ting. Degeneration and Tranfer of the Displacement-Stress Functions From Poroelastic Layered Media to Elastic Layered Media[J]. Applied Mathematics and Mechanics, 2014, 35(2): 162-180. doi: 10.3879/j.issn.1000-0887.2014.02.005

两相饱和介质层与单相介质层应力-位移函数的传递与退化

doi: 10.3879/j.issn.1000-0887.2014.02.005
基金项目: 国家自然科学基金(11172268)
详细信息
    作者简介:

    丁伯阳(1949—),男, 浙江绍兴人,教授(通讯作者. E-mail: dingboyang@hzcnc.com)

  • 中图分类号: TU435;O39

Degeneration and Tranfer of the Displacement-Stress Functions From Poroelastic Layered Media to Elastic Layered Media

Funds: The National Natural Science Foundation of China(11172268)
  • 摘要: 根据Biot孔隙弹性介质动力控制方程,利用快、慢纵波的解耦,求得满足两相饱和介质位移-应力传播的一阶微分方程组.该方程组及传递函数能退化到单相介质的位移-应力传播微分方程组.利用界面应力-位移连续条件,分析了位移-应力从两相饱和介质向单相介质传播,构建了界面过渡传递矩阵.使原有的6×6阶应力-位移传递矩阵过渡为4×6阶矩阵,能与单相介质的4×4阶应力-位移传递矩阵结合.最后,采用经典的波传播模型对比验算了结果,它们一致吻合.
  • [1] Aki K, Richards P G. Quantitative Seismology: Theory and Methods [M]. San Francisco: W H Freeman, 1980.
    [2] Paillet F L, Cheng C H. Acoustic Waves in Boreholes [M]. CRC Press, 1991.
    [3] Ewing W M, Jardetzky W S, Press F. Elastic Waves in Layered Media [M]. McGraw-Hill, 1957.
    [4] Brekhovskikh L M. Waves in Layered Media [M]. New York: Academic Press, 1960.
    [5] Thomson W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics,1950,21(2): 89-93.
    [6] Haskell N A. The dispersion of surface waves in multilayered media[J]. Bulletin of the Seismological Society of America,1953,43(1): 17-34.
    [7] Haskell N A. Radiation pattern of surface waves from point sources in multilayered medium[J]. Bulletin of the Seismological Society of America,1964,54(1): 377-393.
    [8] Harkrider D G. Surface waves in multilayered elastic medium I: rayleigh and love waves from buried sources in a multilayered elastic half-space[J]. Bulletin of the Seismological Society of America,1964,54(2): 627-679.
    [9] Ben-Menahem A, Singh S J. Multipolar elastic fields in a layered half-space[J]. Bulletin of the Seismological Society of America,1968,58(5): 1519-1572.
    [10] Hansen W W. A new type of expansion in radiation problems[J]. Phys Rev,1935,47(2): 139-143.
    [11] 陈运泰. 多层弹性半空间中的地震波(一)[J]. 地球物理学报, 1974,17(1): 20-43.(CHEN Yun-tai. Seismic waves in multilayered elastic half-space(I)[J]. Acta Geophysica Sinica,1974,17(1): 20-43.(in Chinese))
    [12] Gilbert F, Backus G E. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,1966,31(2): 326-332.
    [13] Kennett B L N, Kerry N J. Seismic waves in a stratified half space[J]. Geophysical Journal of the Royal Astronomical Society,1979,57(3): 557-583.
    [14] Kennett B L N. Seismic Wave Propagation in Stratified Media [M]. Cambridge University Press, 1983.
    [15] Pride S, Tromeur E, Berryman J. Biot slow-wave effects in stratified rock[J]. Geophysics,2002,67(1): 452-467.
    [16] Biot M. Theory of propagation of elastic waves in a fluid-saturated porous solid[J]. Journal of the Acoustical Society of America,1956,28(2): 168-191.
    [17] Biot M, Willis D. The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics,1957,24(4): 594-601.
    [18] Deresiewicz H. The effect of boundaries on wave propagation in a liquid-filled porous solid—I: reflection of plane waves at a free plane boundary (non-dissipative case)[J]. Bulletin of the Seismological Society of America,1960,50(4): 599-607.
    [19] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid filled porous-solid—III: reflection of plane waves at a free plane boundary (general case)[J]. Bulletin of the Seismological Society of America,1962,52(3): 505-625.
    [20] Deresiewicz H, Levy A. The effect of boundaries on wave propagation in a liquid-filled porous solid—X: transmission through a stratified medium[J]. Bulletin of the Seismological Society of America,1967,57(3): 381-392.
    [21] Gilbert K E. Reflection of sound from a randomly layered ocean bottom[J]. J Acoust Soc Am,1980,68(5): 1454-1458.
    [22] Yamamoto T, Badiey M. Propagator matrix for acoustic wave propagation through anisotropic porous media[C]//Akal, Berkson eds. Ocean Seismo-Acoustic Symp.Plenum Press, 1985: 463-472.
    [23] QIAO Wen-xiao. Reflection and transmission of acoustic waves on multilayered porous media[J]. Chinese Journal of Acoustics,1993,12(1): 25-37.
    [24] 王耀俊. 多层固体媒质对声波的反射和透射[J]. 南京大学学报(自然科学版), 1993,29(1): 49-62.(WANG Yao-jun. Acoustic wave reflection and transmission on multilayered media[J].Journal of Nanjing University(Natural Sciences Edition),1993,29(1): 49-62.(in Chinese))
    [25] Badiey M, Jaya L, Cheng A H-D. Propagator matrix for plane wave reflection from inhomogeneous anisotropic poroelastic seafloor[J]. Journal of Computational Acoustics,1994,2(1): 11-27.
    [26] Dominguez J. Boundary element approach for dynamic poroelastic problems[J]. International Journal for Numerical Methods in Engineering,1992,35(2): 307-324.
    [27] Jocker J, Smeulders D, Drijkoningen G, Van der Lee C, Kalfsbeek A. Matrix propagator method for layered porous media: analytical expressions and stability criteria[J]. Geophysics,2004,69(4): 1071-1081.
    [28] Ding B Y, Chen J. Solutions of Green’s function for Lamb’s problem of a two-phase saturated medium[J]. Theoretical & Applied Mechanics Letters,2011,1: 052003.
    [29] 丁伯阳, 党改红, 袁金华. 伴有排水的两相饱和介质动力问题的LAMB积分公式[J]. 应用数学和力学, 2010,31(9): 1066-1074.(DING Bo-yang, DANG Gai-hong, YUAN Jin-hua. Lamb’s integral formulas of two-phase saturated medium for soil dynamic problems with drainage[J]. Applied Mathematics and Mechanics,2010,31(9): 1066-1074.(in Chinese))
    [30] DING Bo-yang, YUAN Jin-hua, PAN Xiao-dong. The abstracted and saturated integrated Green functions and OOP of BEM in soil dynamics[J]. Science in China Series G: Physics, Mechanics and Astronomy,2008,51(12): 1926-1937.
    [31] DING Bo-yang, YUAN Jin-hua. Dynamic Green’s functions of a two-phase saturated medium subjected to concentrated force[J]. International Journal of Solid Structures,2011,48(16/17): 2288-2303.
  • 加载中
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  143
  • PDF下载量:  1048
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-15
  • 修回日期:  2013-10-30
  • 刊出日期:  2014-02-15

目录

    /

    返回文章
    返回