留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-η-半预不变凸映射的性质与应用

彭再云 王堃颍 赵勇 张石生

彭再云, 王堃颍, 赵勇, 张石生. D-η-半预不变凸映射的性质与应用[J]. 应用数学和力学, 2014, 35(2): 202-211. doi: 10.3879/j.issn.1000-0887.2014.02.008
引用本文: 彭再云, 王堃颍, 赵勇, 张石生. D-η-半预不变凸映射的性质与应用[J]. 应用数学和力学, 2014, 35(2): 202-211. doi: 10.3879/j.issn.1000-0887.2014.02.008
PENG Zai-yun, WANG Kun-ying, ZHAO Yong, ZHANG Shi-sheng. Characterizations and Applications of D-η-Semipreinvex Mappings[J]. Applied Mathematics and Mechanics, 2014, 35(2): 202-211. doi: 10.3879/j.issn.1000-0887.2014.02.008
Citation: PENG Zai-yun, WANG Kun-ying, ZHAO Yong, ZHANG Shi-sheng. Characterizations and Applications of D-η-Semipreinvex Mappings[J]. Applied Mathematics and Mechanics, 2014, 35(2): 202-211. doi: 10.3879/j.issn.1000-0887.2014.02.008

D-η-半预不变凸映射的性质与应用

doi: 10.3879/j.issn.1000-0887.2014.02.008
基金项目: 国家自然科学基金(11271389; 11301571); 重庆市自然科学基金(CSTC2012jjA00016); 重庆市教委基金(KJ130428)
详细信息
    作者简介:

    彭再云(1980—),男,重庆人,副教授,博士(E-mail: pengzaiyun@126.com)

  • 中图分类号: O221.1

Characterizations and Applications of D-η-Semipreinvex Mappings

Funds: The National Natural Science Foundation of China(11271389; 11301571)
  • 摘要: 提出了一类新的向量值映射——D-η-半预不变凸映射,它是D-预不变凸映射的真推广.首先,用例子说明了D-η-半预不变凸映射的存在性,并说明其区别于D-η-半严格半预不变凸映射;然后,给出了D-η-半预不变凸映射的判定定理,并建立了D-η-半预不变凸映射与D-η-严格/半严格半预不变凸映射间的关系;最后,讨论了D-η-半严格半预不变凸映射在优化问题中的应用,并举例验证了所得结论的正确性.
  • [1] Hanson M A. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
    [2] Ben-Israel A, Mond B. What is invexity?[J]. Journal of the Australian Mathematical Society, 1986,28: 1-9.
    [3] Weir T, Jeyakumar V. A class of nonconvex functions and mathematical programming[J]. Bulletin of Australian Mathematical Society,1988,〖STHZ〗 38: 177-189.
    [4] Yang X M, Li D. On properties of preinvex functions[J]. Journal of Mathematical Analysis and Applications, 2001,256(1): 229-241.
    [5] Yang X M, Li D. Semistrictly preinvex functions[J]. Journal of Mathematical Analysis and Applications, 2001,258(1): 287-308.
    [6] Yang X Q, Chen G Y. A class of nonconvex functions and pre-variational inequalities[J]. Journal of Mathematical Analysis and Applications,1992,169(2): 359-373.
    [7] Peng Z Y, Chang S S. Some properties of semi-G-preinvex functions[J]. Taiwanese Journal of Mathematics,2013,17(3): 873-884.
    [8] Antczak T. G-pre-invex functions in mathematical programming[J]. Journal of Computational and Applied Mathematics,2008,217(1): 212-226.
    [9] Kazmi K R. Some remarks on vector optimization problems[J]. Journal of Optimization Theory and Applications,1998,96(1): 133-138.
    [10] Peng J W, Zhu D L. On D-preinvex type functions[J]. Journal of Inequalities and Applications,2006, Article ID 93532: 1-14.
    [11] Long X J, Peng Z Y, Zeng B. Remark on cone semistrictly preinvex functions[J]. Optimization Letters,2009,3(3): 337-345.
    [12] 彭建文. 向量值映射D-η-预不变真拟凸的性质[J]. 系统科学与数学, 2003,23(3): 306-314.(PENG Jian-wen. Properties of D-η-properly prequasi-invex functions[J]. Journal of Systems Science and Mathematical Sciences,2003,23(3): 306-314.(in Chinese))
    [13] 彭建文. 广义凸性及其在最优化问题中的应用[D]. 博士学位论文. 呼和浩特: 内蒙古大学理工学院, 2005.(PENG Jian-wen. Generalized convexity with application optimization problems[D]. Ph D Thesis. Hohhot: Inner Mongolia University, 2005.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1330
  • HTML全文浏览量:  114
  • PDF下载量:  891
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-16
  • 刊出日期:  2014-02-15

目录

    /

    返回文章
    返回