留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反演极限与Lauwerier吸引子(Ⅰ)

郭峰 李登辉 谢建华

郭峰, 李登辉, 谢建华. 反演极限与Lauwerier吸引子(Ⅰ)[J]. 应用数学和力学, 2014, 35(2): 212-218. doi: 10.3879/j.issn.1000-0887.2014.02.009
引用本文: 郭峰, 李登辉, 谢建华. 反演极限与Lauwerier吸引子(Ⅰ)[J]. 应用数学和力学, 2014, 35(2): 212-218. doi: 10.3879/j.issn.1000-0887.2014.02.009
GUO Feng, LI Deng-hui, XIE Jian-hua. Inverse Limit and Lauwerier Attractor(Ⅰ)[J]. Applied Mathematics and Mechanics, 2014, 35(2): 212-218. doi: 10.3879/j.issn.1000-0887.2014.02.009
Citation: GUO Feng, LI Deng-hui, XIE Jian-hua. Inverse Limit and Lauwerier Attractor(Ⅰ)[J]. Applied Mathematics and Mechanics, 2014, 35(2): 212-218. doi: 10.3879/j.issn.1000-0887.2014.02.009

反演极限与Lauwerier吸引子(Ⅰ)

doi: 10.3879/j.issn.1000-0887.2014.02.009
基金项目: 国家自然科学基金(11172246; 11272268)
详细信息
    作者简介:

    郭峰 (1976—) 男,山东人,博士生(通讯作者. E-mail: mathguofeng@163.com)

  • 中图分类号: O189; O313

Inverse Limit and Lauwerier Attractor(Ⅰ)

Funds: The National Natural Science Foundation of China(11172246;11272268)
  • 摘要: 通过研究两维的Lauwerier映射,得到Lauwerier奇怪吸引子的一个解析表达式.研究了二次映射的反演极限空间上移位映射的动力学性质,建立了投影映射,运用反演极限空间理论研究Lauwerier映射,证明了Lauwerier映射限制在其吸引子上与二次映射的反演极限上的移位映射是拓扑半共扼的,从而得到Lauwerier吸引子是Devaney意义下混沌的.
  • [1] Ruelle D, Takens F. On the nature of turbulence[J]. Commun Math Phys,1971,20(3): 167-192.
    [2] 乐源, 谢建华. 一类双面碰撞振子的对称性尖点分岔与混沌[J]. 应用数学和力学, 2007,28(8): 991-998.(YUE Yuan, XIE Jian-hua. Symmetry, cusp bifurcation and chaos of an impact oscillator between two rigid sides[J]. Applied Mathematics and Mechanics,2007,28(8): 991-998.(in Chinese))
    [3] Leine R I, Nijmeijer H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems [M]. Berlin: Springer, 2004.
    [4] Lorenz E N. Deterministic nonperiodic flow[J]. Journal of Atmospheric Sciences,1963,20(2): 130-141.
    [5] Guckenheimer J. A strange, strange attractor[J]. The Hopf Bifurcation and Its Applications,1976,15: 368-381.
    [6] Guckenheimer J, Williams R F. Structure stability of Lorenz attractors[J]. Publications Mathématiques de l’Institut des Hautes tudes Scientifiques,1979,50(1): 307-320.
    [7] Williams R F. One-dimensional non-wandering sets[J]. Topology,1967,6(4): 473-487.
    [8] Misiurewicz M. Strange attractors for the Lozi mapping[J]. Annals of the New York Academy of Sciences,1980,375: 348-358.
    [9] CAO Yong-luo, LIU Zeng-rong. Strange attractor in the orientation-preserving Lozi map[J]. Chaos, Solitons & Fractals,1998,9(11): 1857-1863.
    [10] Baptista D, Severino R, Vinagre S. The basin of attraction of Lozi mapping[J]. International Journal of Bifurcation and Chaos,2009,19(3): 1043-1049.
    [11] Lauwerier H A. The structure of a strange attractor[J]. Physica D: Nonlinear Phenomena,1986,21(1): 146-154.
    [12] 刘曾荣, 秦文新, 谢惠民. Lauwerier吸引子的结构和动力学行为[J].科学通报, 1992,37(14):1269-1271.(LIU Zeng-rong, QIN Wen-xin, XIE Hui-min. The structure and dynamics of Lauwerier attractor[J]. Chinese Science Bulletin,1992,37(14): 1269-1271.(in Chinese))
    [13] Williams R F. Expanding attractors[J]. Publications Mathématiques de l’Institut des Hautes tudes Scientifiques,1974,43(1): 169-203.
    [14] LI Shi-hai. Dynamical properties of the shift maps on the inverse limit space[J]. Ergodic Theory and Dynamical Systems,1992,12(1): 95-108.
    [15] Keesling J. Attractors and inverse limits[J]. Revista de la Real Academia de Ciencias Exactas, Fisicasy Naturales. Serie A. Matematicas,2008,102 (1): 21-38.
    [16] Raines B E, Stimac S. A classification of inverse limit space of tent maps with a non-recurrent critical point[J]. Algebraic and Geometric Topology,2009,9(2): 1049-1088.
  • 加载中
计量
  • 文章访问数:  1309
  • HTML全文浏览量:  141
  • PDF下载量:  871
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-17
  • 修回日期:  2013-12-05
  • 刊出日期:  2014-02-15

目录

    /

    返回文章
    返回