[1] |
Quirk J J. A contribution to the great Riemann solver debate[J].International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
|
[2] |
Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(2): 357-372.
|
[3] |
Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[J].Shock Waves,1994,4(1): 25-34.
|
[4] |
Pandolfi M, D’ Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J].Journal of Computational Physics,2000,166(2): 271-301.
|
[5] |
Chauvat Y, Moschetta J-M, Gressier J. Shock wave numerical structure and the carbuncle phenomenon[J].International Journal for Numerical Methods in Fluids,2005,47(8/9): 903-909.
|
[6] |
Liou M S. Mass flux schemes and connection to shock instability[J].Journal of Computational Physics,2000,160(2): 623-648.
|
[7] |
XU Kun, LI Zuo-wu. Dissipative mechanism in Godunov-type schemes[J].International Journal for Numerical Methods in Fluids,2001,37(1): 1-22.
|
[8] |
Kim S-S, Kim C, Rho O-H, Hong S K. Cures for the shock instability: development of a shock-stable Roe scheme[J].Journal of Computational Physics,2003,185(2): 342-374.
|
[9] |
Dumbser M, Morschetta J-M, Gressier J. A matrix stability analysis of the carbuncle phenomenon[J].Journal of Computational Physics,2004,197(2): 647-670.
|
[10] |
Ismail F. Toward a reliable prediction of shocks in hypersonic flows: resolving carbuncles with entropy and vorticity control[D]. PhD Thesis. Ann Arbor, MI: University of Michigan, 2009.
|
[11] |
Nishikawa H, Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J].Journal of Computational Physics,2008,227(4): 2560-2581.
|
[12] |
Levy D W, Powell K G, Van Leer B. Use of a rotated Riemann solver for the two-dimensional Euler equations[J].Journal of Computational Physics,1993,106(2): 201-214.
|
[13] |
REN Yu-xin. A robust shock-capturing scheme based on rotated Riemann solver for the two-dimensional Euler equations[J].Computers and Fluids,2003,32(11): 1379-1403.
|
[14] |
Janhunen P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J].Journal of Computational Physics,2000,160(2): 649-661.
|
[15] |
Einfeldt B, Munz C D, Roe P L. On Godunov-type methods near low densities[J].Journal of Computational Physics,1991,92(2): 273-295.
|
[16] |
Harten A, Lax P D, Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J].SIAM Review,1983,25(1): 35-61.
|
[17] |
Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1): 115-173.
|
[18] |
Kurganov A, Tadmor E. Solution of two-dimensional Riemann problems of gas dynamics without Riemann problem solvers[J].Numerical Methods for Partial Differential Equations,2002,18(5): 584-608.
|
[19] |
陈建忠. 浅水方程高分辨率有限差分方法研究[D]. 博士学位论文. 西安: 西北工业大学, 2006.(CHEN Jian-zhong. Research on high-resolution finite-difference methods for the shallow water equations[D]. PhD Thesis. Xi’an: Northwestern Polytechnical University, 2006.(in Chinese))
|
[20] |
胡彦梅, 陈建忠, 封建湖. 双曲型守恒律的一种五阶半离散中心迎风格式[J]. 计算物理, 2008,25(1): 29-35.(HU Yan-mei, CHEN Jian-zhong, FENG Jian-hu. A fifth-order semi-discrete central-upwind scheme for hyperbolic conservation laws[J].Chinese Journal of Computational Physics,2008,25(1): 29-35.(in Chinese))
|