[1] |
Godunov S K. A difference scheme for numerical computation discontinuous solution of hydrodynamic equations[J].Matematicheskii Sbornik,1959,47(3): 271-306.
|
[2] |
Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(2): 357-372.
|
[3] |
Toro E F.Riemann Solver and Numerical Methods for Fluid Dynamics [M]. 2nd ed. Berlin: Springer, 1999.
|
[4] |
Harten A. High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics,1983,49(3): 357-393.
|
[5] |
Harten A, Engquist B, Osher S, Chakravathy R. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J].Journal of Computational Physics,1987,71(2): 231-303.
|
[6] |
LIU Xu-dong, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1): 200-212.
|
[7] |
JIANG Guang-shan, SHU Chi-wang. Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1): 202-228.
|
[8] |
Shyy W, Chen M H, Mittal R, Udaykumar H S. On the suppression of numerical oscillations using a non-linear filter[J].Journal of Computational Physics,1992,102(1): 49-62.
|
[9] |
Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer L, Raphael A, Ruskai M B.Wavelets and Their Application [M]. Cambridge, Massachusetts: Jones and Bartlett, 1992.
|
[10] |
Mallat S.A Wavelet Tour of Signal Processing [M]. 2nd ed. Academic Press, 1999.
|
[11] |
ZONG Zhi, Lam K Y. A localized differential quadrature (LDQ) method and its application to the 2D wave equation[J].Computational Mechanics,2002,29(4/5): 382-391.
|
[12] |
Qian S, Wiess J. Wavelets and the numerical solution of partial differential equations[J].Journal of Computational Physics,1993,106(1): 155-175.
|
[13] |
Zong Z, Zhao Y, Zou W N. Numerical solution for differential evolutional equation using adaptive interpolation wavelet method[J].Chinese Journal of Computational Physics,2010,27(1): 65-69.
|
[14] |
Vasilyev O V, Paolucci S, Sen M. A multilevel wavelet collocation method for solving partial differential equations in a finite domain[J].Journal of Computational Physics,1995,120(1): 33-47.
|
[15] |
Vasilyev O V, Paolucci S. A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain[J].Journal of Computational Physics,1996,125(2): 498-512.
|
[16] |
Farge M, Schneider K, Kevlahan N K R. Non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis[J].Physics of Fluids,1999,11(8): 2187-2201.
|
[17] |
Farge M, Schneider K. Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets[J].Flow, Turbulence and Combustion,2001,66(4): 393-426.
|
[18] |
Goldstein D E, Vasilyev O V. Stochastic coherent adaptive large eddy simulation method[J].Physics of Fluids,2004,16(7): 2497-2513.
|
[19] |
Schneider K, Kevlahan N K R, Farge M. Comparison of an adaptive wavelet method and nonlinearly filtered pseudospectral methods for two-dimensional turbulence[J].Theoretical and Computational Fluid Dynamics,1997,9(3/4): 191-206.
|
[20] |
赵勇, 宗智, 邹文楠. 涡旋演化的小波自适应模拟[J]. 应用数学和力学, 2011,32(1): 33-43.(ZHAO Yong, ZONG Zhi, ZOU Wen-nan. Numerical simulation of vortex evolution based on adaptive wavelet method[J].Applied Mathematics and Mechanics,2011,32(1): 33-43.(in Chinese))
|
[21] |
Daubechies I. Orthonormal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988,41(7): 909-996.
|
[22] |
Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7): 674-693.
|
[23] |
Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Association,1995,90(432): 1200-1224.
|
[24] |
Stoker J J.Water Waves [M]. New York: Interscience Publishers, Inc, 1986.
|
[25] |
Delis A I, Katsaounis Th. Relaxation schemes for the shallow water equations[J].International Journal for Numerical Methods in Fluids,2003,41(7): 695-719.
|
[26] |
ZONG Zhi, ZHANG Ying-yan.Advanced Differential Quadrature Methods[M]. Chapman & Hall/CRC, 2009.
|