留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等几何分析的多重网格共轭梯度法

刘石 陈德祥 冯永新 徐自力 郑李坤

刘石, 陈德祥, 冯永新, 徐自力, 郑李坤. 等几何分析的多重网格共轭梯度法[J]. 应用数学和力学, 2014, 35(6): 630-639. doi: 10.3879/j.issn.1000-0887.2014.06.005
引用本文: 刘石, 陈德祥, 冯永新, 徐自力, 郑李坤. 等几何分析的多重网格共轭梯度法[J]. 应用数学和力学, 2014, 35(6): 630-639. doi: 10.3879/j.issn.1000-0887.2014.06.005
LIU Shi, CHEN De-xiang, FENG Yong-xin, XU Zi-li, ZHENG Li-kun. A Multigrid Preconditioned Conjugate Gradient Method for Isogeometric Analysis[J]. Applied Mathematics and Mechanics, 2014, 35(6): 630-639. doi: 10.3879/j.issn.1000-0887.2014.06.005
Citation: LIU Shi, CHEN De-xiang, FENG Yong-xin, XU Zi-li, ZHENG Li-kun. A Multigrid Preconditioned Conjugate Gradient Method for Isogeometric Analysis[J]. Applied Mathematics and Mechanics, 2014, 35(6): 630-639. doi: 10.3879/j.issn.1000-0887.2014.06.005

等几何分析的多重网格共轭梯度法

doi: 10.3879/j.issn.1000-0887.2014.06.005
基金项目: 国家重点基础研究发展计划(973计划)(2011CB706505);国家自然科学基金(51275385)
详细信息
    作者简介:

    刘石(1974—),男,湖北大冶人,高级工程师,博士(E-mail: 13925041516@139.com)

  • 中图分类号: O241.82

A Multigrid Preconditioned Conjugate Gradient Method for Isogeometric Analysis

Funds: The National Basic Research Program of China (973 Program)(2011CB706505);The National Natural Science Foundation of China(51275385)
  • 摘要: 提高NURBS基函数阶数可以提高等几何分析的精度,同时也会降低多重网格迭代收敛速度.将共轭梯度法与多重网格方法相结合,提出了一种提高收敛速度的方法,该方法用共轭梯度法作为基础迭代算法,用多重网格进行预处理.对Poisson(泊松)方程分别用多重网格方法和多重网格共轭梯度法进行了求解,计算结果表明:等几何分析中采用高阶NURBS基函数处理三维问题时,多重网格共轭梯度法比多重网格法的收敛速度更快.
  • [1] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J].Computer Methods in Applied Mechanics and Engineering,2005,194(39/41): 4135-4195.
    [2] 陈德祥, 徐自力, 刘石, 冯永新. 求解Stokes方程的最小二乘等几何分析方法[J]. 西安交通大学学报, 2013,47(5): 51-55.(CHEN De-xiang, XU Zi-li, LIU Shi, FENG Yong-xin. Least squares isogeometric analysis for Stokes equation[J].Journal of Xi’an Jiaotong University,2013,47(5): 51-55.(in Chinese))
    [3] Evans J A, Bazilevs Y, Babuska I, Hughes T J R.n -widths, sup-infs, and optimality ratios for thek -version of the isogeometric finite element method[J].Computer Methods in Applied Mechanics and Engineering,2009,198(21/26): 1726-1741.
    [4] Lipton S, Evans J A, Bazilevs Y, Elguedj T, Hughes T J R. Robustness of isogeometric structural discretizations under severe mesh distortion[J].Computer Methods in Applied Mechanics and Engineering,2010,199(5/8): 357-373.
    [5] 陶文铨. 计算传热学的近代进展[M]. 北京: 科学出版社, 2000.(TAO Wen-quan.Advances in Computational Heat Transfer[M]. Beijing: Science Press, 2000.(in Chinese))
    [6] Kumar D S, Kumar K S, Das M K. A fine grid solution for a lid-driven cavity flow using multigrid method[J].Engineering Applications of Computational Fluid Mechanics,2009,3(3): 336-354.
    [7] Trottenberg U, Oosterlee C W, Schuller A.Multigrid [M]. Academic Press, 2000.
    [8] Briggs W L, Henson V E, McCormick S F.A Multigrid Tutorial [M]. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000.
    [9] Sampath R S, Biros G. A parallel geometric multigrid method for finite elements on octree meshes[J].SIAM Journal on Scientific Computing,2010,32(3): 1361-1392.
    [10] Gahalaut K P S, Kraus J K, Tomar S K. Multigrid methods for isogeometric discretization[J].Computer Methods in Applied Mechanics and Engineering,2013,253: 413-425.
    [11] Saad Y.Iterative Methods for Sparse Linear Systems [M]. SIAM, 2003.
    [12] Tatebe O. The multigrid preconditioned conjugate gradient method[C]//Melson N D.The Sixth Copper Mountain Conference on Multigrid Methods.Copper Mountain: NASA, 1993: 621-634.
    [13] Cohen E, Lyche T, Riesenfeld R. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics[J].Computer Graphics and Image Processing,1980,14(2): 87-111.
    [14] de Falco C, Reali A, Vazquez R. GeoPDEs: a research tool for isogeometric analysis of PDEs[J].Advances in Engineering Software,2011,42(12): 1020-1034.
  • 加载中
计量
  • 文章访问数:  1908
  • HTML全文浏览量:  227
  • PDF下载量:  1841
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-03
  • 修回日期:  2014-05-04
  • 刊出日期:  2014-06-11

目录

    /

    返回文章
    返回