留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性半空间热冲击问题的广义热弹性解

王颖泽 王谦 刘栋 宋新南

王颖泽, 王谦, 刘栋, 宋新南. 弹性半空间热冲击问题的广义热弹性解[J]. 应用数学和力学, 2014, 35(6): 640-651. doi: 10.3879/j.issn.1000-0887.2014.06.006
引用本文: 王颖泽, 王谦, 刘栋, 宋新南. 弹性半空间热冲击问题的广义热弹性解[J]. 应用数学和力学, 2014, 35(6): 640-651. doi: 10.3879/j.issn.1000-0887.2014.06.006
WANG Ying-ze, WANG Qian, LIU Dong, SONG Xin-nan. Generalized Thermoelastic Solutions to the Problems of Thermal Shock on Elastic Half Space[J]. Applied Mathematics and Mechanics, 2014, 35(6): 640-651. doi: 10.3879/j.issn.1000-0887.2014.06.006
Citation: WANG Ying-ze, WANG Qian, LIU Dong, SONG Xin-nan. Generalized Thermoelastic Solutions to the Problems of Thermal Shock on Elastic Half Space[J]. Applied Mathematics and Mechanics, 2014, 35(6): 640-651. doi: 10.3879/j.issn.1000-0887.2014.06.006

弹性半空间热冲击问题的广义热弹性解

doi: 10.3879/j.issn.1000-0887.2014.06.006
基金项目: 国家自然科学基金(11102073);中国博士后科学基金(2012M511207);江苏高校优势学科建设项目(PAPD)
详细信息
    作者简介:

    王颖泽(1981—),男,河北秦皇岛人,副教授,博士(通讯作者. E-mail: wyz3701320@ujs.edu.cn)

  • 中图分类号: O343.6

Generalized Thermoelastic Solutions to the Problems of Thermal Shock on Elastic Half Space

Funds: The National Natural Science Foundation of China(11102073); China Postdoctoral Science Foundation(2012M511207)
  • 摘要: 基于Laplace变换技术及其极限定理,推导了基于分数阶积分的不同广义热弹性理论模型下弹性半空间受热冲击作用的渐近解,该渐近解可以准确地揭示热量在弹性体内传播的波动特性,并可以捕捉到受热冲击作用在弹性波波前位置处产生的阶跃现象.通过对热冲击下弹性波的传播及热弹性响应的渐近求解及结果分析,比较了不同广义热弹性理论对于热冲击问题的预测能力,并揭示了热传输能力的不同对于热弹性行为的影响.
  • [1] 过增元. 国际传热研究前沿——微细尺度传热[J]. 力学进展, 2000,30(1): 1-6.(GUO Zeng-yuan. Frontier of heat transfer—microscale heat transfer[J].Advance in Mechanics,2000,30(1): 1-6.(in Chinese))
    [2] Herwig H, Beckert K. Experiment evidence about the controversy concerning Fourier and non-Foureir heat conduction in materials with a nonhomogeneous inner structure[J].Heat Mass Transfer,2000,36(5): 387-392.
    [3] Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J].Journal of the Mechanics and Physics of Solids,1967,15(5): 299-309.
    [4] Green A E, Lindsay K A. Thermoelasticity[J].Journal of Elasticity,1972,2(1): 1-7.
    [5] Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J].Journal of Elasticity,1993,31(3): 189-208.
    [6] 田晓耕, 沈亚鹏. 广义热弹性问题研究进展[J]. 力学进展, 2012,42(1): 1-11.(TIAN Xiao-geng, SHEN Ya-peng. Research progress in generalized thermoelastic problems[J].Advance in Mechanics,2012,42(1): 1-11.(in Chinese))
    [7] Bagri A, Eslami M R. A unified generalized thermoelasticity solution for cylinders and spheres[J].International Journal of Mechanics and Sciences,2007,49(12): 1325-1335.
    [8] Babaei M H, Chen Z T. Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source[J].Archive of Applied Mechanics,2010,80(7): 803-813.
    [9] Ezzat A M, El-Karamany A S, Samaan A A. The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity[J].Applied Mathematics and Computation,2004,147(1): 169-189.
    [10] Youssef H M. Generalized magneto-thermoelasticity in a conducting medium with variable material properties[J]. Applied Mathematics and Computation,2006,173(2): 822-833.
    [11] Kumar R, Devi S. Thermomechanical deformation in porous generalized thermoelastic body with variable material properties[J].Structural Engineering and Mechanics,2010,34(2): 285-300.
    [12] Ei-caramany A S, Ezzat M A. Thermal shock problem in generalized thermoviscoelasticity under four theories[J].International Journal of Engineering Scicence,2004,42(7): 649-671.
    [13] TIAN Xiao-geng, SHEN Ya-peng, CHEN Chang-qing, HE Tian-hu. A direct finite element method study of generalized thermoelastic problems[J].International Journal of Solids and Structures,2006,43(7/8): 2050-2063.
    [14] Balla M, Hungary B. Analytical study of the thermal shock problem of a half-space with various thermoelastic models[J].Acta Mechanica,1991,89(1/4): 73-92.
    [15] Wang Y Z, Zhang X B, Song X N. A unified generalized thermoelasticity solution for the transient thermal shock problem[J].Acta Mechancia,2012,223(4): 735-743.
    [16] 王颖泽, 张小兵, 宋新南. 圆柱体外表面受热冲击问题的广义热弹性分析[J]. 力学学报, 2012,44(2): 317-325.(WANG Ying-ze, ZHANG Xiao-bing, SONG Xin-nan. Research on generalized thermoelastic problems of a solid cylinder subjected to thermal shock[J].Chinese Journal of Theoretical and Applied Mechanics,2012,44(2): 317-325.(in Chinese))
    [17] 王颖泽, 张小兵, 刘栋. 轴对称平面应变问题的广义热弹性解[J]. 中国科学:物理学, 力学, 天文学, 2013,43(8): 956-964.(WANG Ying-ze, ZHANG Xiao-bing, LIU Dong. Generalized thermoelastic solutions for the axisymmetric plane strain problem[J].Scientia Sinica: Physica, Mechanica & Astronomica,2013,43(8): 956-964.(in Chinese))
    [18] Youssef H M. Theory of fractional order generalized thermoelasticity[J].ASME Journal of Heat Transfer,2010,132(6): 061301.
    [19] Sherief H H, El-Sayed A M A, Abd El-Latief A M. Fractional order theory of thermoelasticity[J].International Journal of Solids and Structures, 2010,47(2): 269-275.
    [20] Youssef H M. Generalized thermoelasticity of an infinite body with a cylindrical and variable material properties[J].Journal of Thermal Stresses,2005,28(5): 521-532.
  • 加载中
计量
  • 文章访问数:  1483
  • HTML全文浏览量:  134
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-07
  • 修回日期:  2014-05-08
  • 刊出日期:  2014-06-11

目录

    /

    返回文章
    返回