留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双稳态压电能量获取系统的分岔混沌阈值

李海涛 秦卫阳

李海涛, 秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学, 2014, 35(6): 652-662. doi: 10.3879/j.issn.1000-0887.2014.06.007
引用本文: 李海涛, 秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学, 2014, 35(6): 652-662. doi: 10.3879/j.issn.1000-0887.2014.06.007
LI Hai-tao, QIN Wei-yang. Bifurcation and Chaos Thresholds of Bistable Piezoelectric Vibration Energy Harvesting Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 652-662. doi: 10.3879/j.issn.1000-0887.2014.06.007
Citation: LI Hai-tao, QIN Wei-yang. Bifurcation and Chaos Thresholds of Bistable Piezoelectric Vibration Energy Harvesting Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 652-662. doi: 10.3879/j.issn.1000-0887.2014.06.007

双稳态压电能量获取系统的分岔混沌阈值

doi: 10.3879/j.issn.1000-0887.2014.06.007
基金项目: 国家自然科学基金(11172234)
详细信息
    作者简介:

    李海涛(1985—),男, 河北人,博士生(E-mail: lihaitao5884@163.com)

  • 中图分类号: O322

Bifurcation and Chaos Thresholds of Bistable Piezoelectric Vibration Energy Harvesting Systems

Funds: The National Natural Science Foundation of China(11172234)
  • 摘要: 建立了双稳态压电能量获取系统动力学模型并且分析了系统的同宿分岔和混沌等非线性动力学行为.根据受压梁的双稳态特性,提出了等效双稳态压电能量获取系统的数学模型.基于Melnikov理论,获得了谐波激励作用下的能量获取系统关于同宿分岔的定性研究方法.通过优化系统参数,得到了发生同宿分岔的阈值曲线.数值结果显示系统在临界阈值处由单阱运动演变为双阱运动,验证了理论分析的有效性.结果表明Melnikov方法可为能量获取系统的参数设计提供有效的理论依据.
  • [1] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting[J].Phys Rev Lett,2008,102(8): 080601.
    [2] 崔岩, 王飞, 董维杰, 姚明磊, 王立鼎. 非线性压电式能量采集器[J]. 光学 精密工程, 2012,20(12): 2737-2743.(CUI Yan, WANG Fei, DONG Wei-jie, YAO Ming-lei, WANG Li-ding. Nonlinear piezoelectric energy harvester[J].Optics and Precision Engineering,2012,20(12): 2737-2743.(in Chinese))
    [3] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集[J]. 物理学报, 2010,59(3): 2137-2146.(DAI Xian-zhi, WEN Yu-mei, LI Ping, YANG Jin, JIANG Xiao-fang. Vibration energy havester based on magnetoelectric transducer[J].Acta Physica Sinica, 2010,59(3): 2137-2146.(in Chinese))
    [4] 陈仲生, 骆彦廷, 杨拥民. 非线性压电振动能量俘获行为建模及其不同参数影响机理研究[J]. 国防科技大学学报, 2013,35(2): 154-158.(CHEN Zhong-sheng, LUO Yan-ting, YANG Yong-min. Modeling of nonlinear piezoeletric vibration energy havesting behaviors and the effects of its different parameters[J]. Journal of National University of Defense Technology,2013,35(2): 154-158.(in Chinese))
    [5] Roundy S. On the effectiveness of vibration-based energy harvesting[J].Journal of Intelligent Material Systems and Structures,2005,16(10): 809-823.
    [6] 孙舒, 曹树谦. 双稳态压电悬臂梁发电系统的动力学建模及分析[J]. 物理学报, 2012,61(21): 210505.(SUN Shu, CAO Shu-qian. Dynamical modeling and analysis of a bistable piezoeletric cantilever power generation system[J].Acta Physica Sinica,2012,61(21): 210505.(in Chinese))
    [7] Masana R, Daqaq M F. Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters[J].Journal of Vibration and Acoustics, 2011,133(1): 011007.
    [8] Masana R, Daqaq M F. Relative performance of a vibratory energy harvester in mono-and bi-stable potentials[J].Journal of Sound and Vibration,2011,330(24): 6036-6052.
    [9] Masana R, Daqaq M F. Energy harvesting in the super-harmonic frequency region of a twin-well oscillator[J].Journal of Applied Physics,2012,111(4): 044501.
    [10] Friswell M I, Ali S F, Adhikari S, Lees A W, Bilgen O, Litak G. Nonlinear piezoelectric vibration energy harvesting from an inverted cantilever beam with tip mass[J].Journal of Intelligent Material Systems and Structures,2012,23(3): 1505-1521.
    [11] Guckenheimer J, Holmes P.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields [M]. New York: Springer-Verlag, 1983: 184-193.
    [12] Stanton S C, Mann B P, Owens B A M. Melnikov theoretic methods for characterizing the dynamics of a bistable piezoelectric inertial generator in complex spectral environments[J].Physica D,2012,241(6): 711-720.
    [13] Buckjohn C N D, Siewe M S, Fokou I S M, Tchawoua C, Kofane T C. Investigating bifurcations and chaos in magneto piezoelectric vibrating energy harvesters using Melnikov theory[J].Physica Scripta,2013,88(1): 015006.
    [14] Harne R L, Thota M, Wang K W. Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvester[J].Applied Physics Letters,2013,102(5): 053903.
    [15] Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V. Piezoeletric buckled beam for random viration energy harvesting[J].Smart Materials and Structures,2012,21(3): 035021.
    [16] HUANG Xiu-chang, LIU Xing-tian, SUN Jing-ya, ZHANG Zhi-yi, HUA Hong-xing. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study[J].Journal of Sound and Vibration,2014,333(4): 1132-1148.
    [17] Cao Q, Wiercigroch M, Pavlovskaia E E, Grebogi C, Thompson J M T. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics[J]. Phil Trans R Soc A,2008,366(1865): 635-652.
    [18] TIAN Rui-lan, CAO Qing-jie, YANG Shao-pu. The codimension two bifurcation for the recent proposed SD oscillator[J].Nonlinear Dynamics,2010,59(1): 19-27.
  • 加载中
计量
  • 文章访问数:  1481
  • HTML全文浏览量:  176
  • PDF下载量:  914
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-06
  • 修回日期:  2014-04-03
  • 刊出日期:  2014-06-11

目录

    /

    返回文章
    返回