留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某型仿生鱼自主直线巡游速度的影响因素研究

郝栋伟 王文全

郝栋伟, 王文全. 某型仿生鱼自主直线巡游速度的影响因素研究[J]. 应用数学和力学, 2014, 35(6): 674-683. doi: 10.3879/j.issn.1000-0887.2014.06.009
引用本文: 郝栋伟, 王文全. 某型仿生鱼自主直线巡游速度的影响因素研究[J]. 应用数学和力学, 2014, 35(6): 674-683. doi: 10.3879/j.issn.1000-0887.2014.06.009
HAO Dong-wei, WANG Wen-quan. Parametric Study on the Straight-Line Cruising Velocity of an Auto-Swimming Robotic Fish[J]. Applied Mathematics and Mechanics, 2014, 35(6): 674-683. doi: 10.3879/j.issn.1000-0887.2014.06.009
Citation: HAO Dong-wei, WANG Wen-quan. Parametric Study on the Straight-Line Cruising Velocity of an Auto-Swimming Robotic Fish[J]. Applied Mathematics and Mechanics, 2014, 35(6): 674-683. doi: 10.3879/j.issn.1000-0887.2014.06.009

某型仿生鱼自主直线巡游速度的影响因素研究

doi: 10.3879/j.issn.1000-0887.2014.06.009
基金项目: 国家自然科学基金(11262008;11002063)
详细信息
    作者简介:

    郝栋伟(1987—),男,河北邯郸人,硕士(E-mail: 1987hdw@163.com)

  • 中图分类号: Q692;O35

Parametric Study on the Straight-Line Cruising Velocity of an Auto-Swimming Robotic Fish

Funds: The National Natural Science Foundation of China(11262008;11002063)
  • 摘要: 深入开展鱼游等生物运动力学机理的研究对日益增长的仿生技术需求具有重要的意义.为此,该文以某型仿生鱼自主游动为研究对象,基于浸入边界法的流固耦合建模思想,以鱼体肌肉提供的主动力为原动,建立了鱼体内力、鱼体运动和外界流体耦合作用的自主游动柔性鱼模型.分别对不同长度尾鳍、不同弹性模量鱼体以及鱼肌肉提供不同作用力下仿生鱼的自主直线巡游进行了数值模拟.分析了鱼自主游动的水动力学特征和鱼体运动特征,揭示了影响鱼游动速度的关键因素及其力学机理.
  • [1] 童秉纲, 孙茂, 尹协振. 飞行和游动生物流体力学的国内研究进展概述[J]. 自然杂志, 2005,27(4): 191-198.(TONG Bing-gang, SUN Mao, YIN Xie-zhen. A brief review on domestic research developments in biofluid dynamics of animal flying and swimming[J].Chinese Journal of Nature,2005,27(4): 191-198.(in Chinese))
    [2] 潘定一. 基于沉浸边界法的鱼游运动水动力学机理研究[D]. 博士学位论文. 杭州: 浙江大学, 2011.(PAN Ding-yi. Studies on the hydrodynamic mechanism of fish-like swimming with immersed boundary methods[D]. PhD Thesis. Hangzhou: Zhejiang University, 2011.(in Chinese))
    [3] Liao J C, Beal D N, Lauder G V, Triantafyllou M S. Fish exploiting vortices decrease muscle activity[J].Science,2003,302(5650): 1566-1569.
    [4] Tytell E D, Hsu C Y, Williams T L, Cohen A H, Fauci L J. Interactions between internal forces, body stiffness and fluid environment in a neuromechanical model of lamprey swimming[J].Proceedings of the National Academy of Sciences,2010,107(46): 19832-19837.
    [5] WU Chui-jie, WANG Liang. Numerical simulations of self-propelled swimming of 3D bionic fish school[J].Science in China Series E: Technological Sciences,2009,52(3): 658-669.
    [6] Peskin C S. The immersed boundary method[J].Acta Numerica,2002,11: 479-517.
    [7] Griffith B E, Hornung R D, McQueen D M, Peskin C S. An adaptive, formally second order accurate version of the immersed boundary method[J].Journal of Computational Physics,2007,223(1): 10-49.
    [8] Bowtell G, Williams T L. Anguilliform body dynamics: modeling the interaction between muscle activation and body curvature[J].Philosophical Transactions of the Royal Society of London Series B,1991,334(1271): 385-390.
    [9] Cheng J Y, Pedley T J, Altringham J D. A continuous dynamic beam model for swimming fish[J].Philosophical Transactions of the Royal Society of London Series B,1998,353(1371): 981-997.
    [10] Pedley T J, Hill S J. Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics[J].The Journal of Experimental Biology,1999,202(23): 3431-3438.
    [11] Lai M C, Peskin C S. An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[J].Journal of Computational Physics,2000,160(2): 705-719.
    [12] Boffi D, Gastaldi L, Heltai L, Peskin C S. On the hyper-elastic formulation of the immersed boundary method[J].Computer Methods in Applied Mechanics and Engineering,2008,197 (25/28): 2210-2231.
  • 加载中
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  174
  • PDF下载量:  953
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-28
  • 修回日期:  2014-04-06
  • 刊出日期:  2014-06-11

目录

    /

    返回文章
    返回