留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时不变分数阶系统反周期解的存在性

杨绪君 宋乾坤

杨绪君, 宋乾坤. 时不变分数阶系统反周期解的存在性[J]. 应用数学和力学, 2014, 35(6): 684-691. doi: 10.3879/j.issn.1000-0887.2014.06.010
引用本文: 杨绪君, 宋乾坤. 时不变分数阶系统反周期解的存在性[J]. 应用数学和力学, 2014, 35(6): 684-691. doi: 10.3879/j.issn.1000-0887.2014.06.010
YANG Xu-jun, SONG Qian-kun. On the Existence of Anti-Periodic Solutions in Time-Invariant Fractional Order Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 684-691. doi: 10.3879/j.issn.1000-0887.2014.06.010
Citation: YANG Xu-jun, SONG Qian-kun. On the Existence of Anti-Periodic Solutions in Time-Invariant Fractional Order Systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 684-691. doi: 10.3879/j.issn.1000-0887.2014.06.010

时不变分数阶系统反周期解的存在性

doi: 10.3879/j.issn.1000-0887.2014.06.010
基金项目: 国家自然科学基金(61273021);重庆市自然科学基金(重点)(CQcstc2013jjB40008)
详细信息
    作者简介:

    杨绪君(1989—),男,江苏徐州人,硕士生(E-mail: xujunyangcquc@163.com)

  • 中图分类号: O175.13

On the Existence of Anti-Periodic Solutions in Time-Invariant Fractional Order Systems

Funds: The National Natural Science Foundation of China(61273021)
  • 摘要: 反周期解问题是非线性微分系统动力学的重要特征.近年来,非线性整数阶微分系统的反周期解问题得到了广泛的研究,非线性分数阶微分系统的反周期解问题也得到了初步的讨论.不同于已有的工作,该文研究时不变分数阶系统反周期解的存在性问题.证明了时不变分数阶系统在有限时间区间内不存在反周期解,而当分数阶导数的下限趋近于无穷大时,时不变分数阶系统却存在反周期解.
  • [1] Butzer P L, Engels W,Wipperfürth U. An extension of the dyadic calculus with fractional order derivatives. further theory and applications[J].Computers & Mathematics With Applications,1986,12A(8): 921-943.
    [2] Diethelm K, Ford N J. Analysis of fractional differential equations[J].Journal of Mathematical Analysis and Applications,2002,265(2): 229-248.
    [3] Tavazoei M S, Haeri M. Describing function based methods for predicting chaos in a class of fractional order differential equations[J].Nonlinear Dynamics,2009,57(3): 363-373.
    [4] Tavazoei M S, Haeri M. A proof for non existence of periodic solutions in time invariant fractional order systems[J].Automatica,2009,45(8): 1886-1890.
    [5] Tavazoei M S. A note on fractional-order derivatives of periodic functions[J].Automatica,2010,46(5): 945-948.
    [6] Yazdani M, Salarieh H. On the existence of periodic solutions in time-invariant fractional order systems[J].Automatica,2011,47(8): 1834-1837.
    [7] Kaslik E, Sivasundaram S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions[J].Nonlinear Analysis: Real World Applications,2012,13(3): 1489-1497.
    [8] Rahimi M A, Salarieh H, Alasty A. Stabilizing periodic orbits of fractional order chaotic systems via linear feedback theory[J].Applied Mathematical Modelling,2012,36(3): 863-877.
    [9] Wang J R, Feckan M, Zhou Y. Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(2): 246-256.
    [10] Okochi H. On the existence of periodic solutions to nonlinear abstract parabolic equations[J].Journal of the Mathematical Society of Japan,1988,40(3): 541-553.
    [11] Haraux A. Anti-periodic solutions of some nonlinear evolution equations[J].Manuscripta Mathematica,1989,63(4): 479-505.
    [12] Okochi H. On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains[J].Nonlinear Analysis: Theory, Methods & Applications,1990,14(9): 771-783.
    [13] Chen Y Q. Anti-periodic solutions for semilinear evolution equations[J].Journal of Mathematical Analysis and Applications,2006,315(1): 337-348.
    [14] Liu B W. Anti-periodic solutions for forced Rayleigh-type equations[J].Nonlinear Analysis: Real World Applications,2009,10(8): 2850-2856.
    [15] Liu A M, Feng C H. Anti-periodic solutions for a kind of high order differential equations with multi-delay[J].Communications in Mathematical Analysis,2011,11(1): 137-150.
    [16] Liu Y J. Anti-periodic solutions of nonlinear first order impulsive functional differential equations[J].Mathematica Slovaca,2012,62(4): 695-720.
    [17] Tian Y, Henderson J. Anti-periodic solutions of higher order nonlinear difference equations: a variational approach[J].Journal of Difference Equations and Applications,2013,19(8): 1380-1392.
    [18] Ahmad B, Nieto J J. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory[J].Topological Methods in Nonlinear Analysis,2010,35(2): 295-304.
    [19] Ahmad B, Nieto J J. Existence of solutions for impulsive anti-periodic boundary value problems of fractional order[J].Taiwanese Journal of Mathematics,2011,15(3): 981-993.
    [20] Chen A P, Chen Y. Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations [J].Differential Equations and Dynamical Systems,2011,19(3): 237-252.
    [21] Cernea A. On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions[J].Journal of Applied Mathematics and Computing,2012,38(1/2): 133-143.
    [22] Kilbas A, Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations(North-Holland Mathematics Studies 204) [M]. Amsterdam: Elsevier, 2006.
  • 加载中
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  123
  • PDF下载量:  900
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-24
  • 修回日期:  2014-05-06
  • 刊出日期:  2014-06-11

目录

    /

    返回文章
    返回