[1] |
梅凤翔, 吴惠彬. 一阶Lagrange系统的梯度表示[J]. 物理学报, 2013,62(21). doi: 10.7498/aps.62.214501.(MEI Feng-xiang, WU Hui-bin. A gradient representation of first-order Lagrange system[J].Acta Physica Sinica,2013,62(21). doi: 10.7498/aps.62.214501.(in Chinese))
|
[2] |
Lucas W F.Differential Equations Models [M]. New York: Springer-Verlag, 1983.
|
[3] |
王树禾. 微分方程模型与混沌[M]. 合肥: 中国科学技术大学出版社, 1999.(WANG Shu-he.Differential Equations Models and Chaos [M]. Hefei: University of Science and Technology of China Press, 1999.(in Chinese))
|
[4] |
李子平. 经典和量子约束系统及其对称性质[M]. 北京: 北京工业大学出版社, 1993.(LI Zi-ping.Classical and Quantal Dynamics of Constrained System and Their Symmetrical Properties [M]. Beijing: Beijing Technology University Press, 1993.(in Chinese))
|
[5] |
Sudarshan E C G, Mukunda N.Classical Dynamics: A Modern Perspectiv e[M]. New York: John Wiley & Sons, 1974.
|
[6] |
Santilli R M.Foundations of Theoretical Mechanics I—The Inverse Problem in Newtonian Mechanics [M]. New York: Springer-Verlag, 1978.
|
[7] |
梅凤翔, 尚玫. 一阶Lagrange系统的Lie对称性与守恒量[J]. 物理学报, 2000,49(10): 1901-1903.(MEI Feng-xiang, SHANG Mei. Lie symmetries and conserved quantities of first order Lagrange systems[J].Acta Physica Sinica,2000,49(10): 1901-1903.(in Chinese))
|
[8] |
Hirsch M W, Smale S, Devaney R L.Differential Equations, Dynamical Systems, and an Introduction to Chaos [M]. Singapore: Elsevier, 2008.
|
[9] |
梅凤翔, 吴惠彬. 广义Hamilton系统与梯度系统[J]. 中国科学: 物理学, 力学, 天文学, 2013,43(4): 538-540.(MEI Feng-xiang, WU Hui-bin. Generalized Hamilton system and gradient system[J].Scientia Sinica: Physica, Mechanica & Astronomica,2013,43(4): 538-540.(in Chinese))
|
[10] |
楼智美, 梅凤翔. 力学系统的二阶梯度表示[J]. 物理学报, 2012,61(2). doi: 10.7498/aps.61.024502.(LOU Zhi-mei, MEI Feng-xiang. A second order gradient representation of mechanics system[J].Acta Physica Sinica,2012,61(2). doi: 10.7498/aps.61.024502.(in Chinese))
|