留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析

邹丽 王振 宗智 王喜军 张朔

邹丽, 王振, 宗智, 王喜军, 张朔. 指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析[J]. 应用数学和力学, 2014, 35(7): 777-789. doi: 10.3879/j.issn.1000-0887.2014.07.007
引用本文: 邹丽, 王振, 宗智, 王喜军, 张朔. 指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析[J]. 应用数学和力学, 2014, 35(7): 777-789. doi: 10.3879/j.issn.1000-0887.2014.07.007
ZOU Li, WANG Zhen, ZONG Zhi, WANG Xi-jun, ZHANG Shuo. Analytical and Numerical Investigation of the Variable Coefficient Burgers Equation Under Cauchy Condition With the Exponential Homotopy Method[J]. Applied Mathematics and Mechanics, 2014, 35(7): 777-789. doi: 10.3879/j.issn.1000-0887.2014.07.007
Citation: ZOU Li, WANG Zhen, ZONG Zhi, WANG Xi-jun, ZHANG Shuo. Analytical and Numerical Investigation of the Variable Coefficient Burgers Equation Under Cauchy Condition With the Exponential Homotopy Method[J]. Applied Mathematics and Mechanics, 2014, 35(7): 777-789. doi: 10.3879/j.issn.1000-0887.2014.07.007

指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析

doi: 10.3879/j.issn.1000-0887.2014.07.007
基金项目: 国家自然科学基金(51379033; 51221961;51239002;51309040);国家重点基础研究发展计划(973计划)(2013CB036101);中央高校基本科研业务费专项资金(DUTBJS01)
详细信息
    作者简介:

    邹丽(1981—),女,辽宁盘锦人,副教授,博士(通讯作者. Tel:+86-411-84706373; E-mail: lizou@dlut.edu.cn)

  • 中图分类号: O242.1

Analytical and Numerical Investigation of the Variable Coefficient Burgers Equation Under Cauchy Condition With the Exponential Homotopy Method

Funds: The National Natural Science Foundation of China(51379033; 51221961;51239002;51309040);The National Basic Research Program of China (973 Program)(2013CB036101)
  • 摘要: 使用近似解析法来研究在给定初始条件和边界条件下变系数Burgers方程,引入一种新式同伦来解决微分方程中由变系数带来的问题,这种新同伦比传统方法计算更高效,并能给出时域上的一致解析表达式.分别计算了有限空间域上变系数Burgers方程的解析解,讨论了在有限空间区域上激波的形成,并对所得解析解进行了范数意义下收敛性研究的探索.基于Lie(李)变换群理论,研究了该方程的对称性质,给出了其无穷小生成子,守恒律和群不变解.文中给出的解是从非线性偏微分方程中直接得到的,未经过行波变换.通过“h-curve”准则探讨了近似解的收敛性.通过有限差分法进行直接数值模拟,已验证该方法的准确性和有效性.
  • [1] Sauchder P L.Nonlinear Diffusive Waves[M]. New York: Cambridge University Press, 1987.
    [2] Scott J F. The long time asymptotics of solutions to the generalized Burgers equation[J].Proceedings of the Royal Society of London, Series A ,1981,373(1755): 443-456.
    [3] Crighton D G, Scott J F. Asymptotic solution of model equations in nonlinear acoustic[J].Phil Trans R Soc Lond, Series A,1979,292(1389): 101-134.
    [4] ZHANG Hui. Global existence and asymptotic behavior of the solution of a generalized Burger’s equation with viscocity[J].Computers and Mathematics With Applications,2001,41(5/6): 589-596.
    [5] 黄磊, 孙建安, 豆福全, 段文山, 刘兴霞. (3+1)维非线性Burgers系统的新的分离变量解及其局域激发结构与分形结构[J].物理学报, 2007,56(2): 611-619.(HUANG Lei, SUN Jian-an, DOU Fu-quan, DUAN Wen-shan, LIU Xing-xia. New variable separation solutions, localized structures and fractals in the (3+1)-dimensional nonlinear Burgers system[J].Acta Physica Sinica,2007,56(2): 611-619.(in Chinese))
    [6] 石玉仁, 吕克璞, 段文山, 杨红娟. 变系数Burgers方程的精确解[J]. 兰州大学学报(自然科学版), 2005,41(4): 107-111.(SHI Yu-ren, Lü Ke-pu, DUAN Wen-shan, YANG Hong-juan. Exact solutions to Burgers equation with variable coefficients[J].Journal of Lanzhou University(Natural Sciences),2005,41(4): 107-111.(in Chinese))
    [7] 史秀珍, 斯仁道尔吉. 变系数Burgers方程与KdV-Burgers方程的试探函数解[J].内蒙古大学学报(自然科学版), 2012,43(1): 23-26.(SHI Xiu-zhen, Sirendaoerji. Trial function solutions of the variable coefficients Burgers equation and the KdV-Burgers equation[J].Journal of Inner Mongolia University(Natural Sciences),2012,43(1): 23-26.(in Chinese))
    [8] 石玉仁, 汪映海, 杨红娟, 吕克璞, 段文山. 广义变系数Burgers方程的精确解[J]. 华东师范大学学报(自然科学版), 2006,2006(5): 27-33.(SHI Yu-ren, WANG Ying-hai, YANG Hong-juan, L Ke-pu, DUAN Wen-shan. Exact solution of generalized Burgers’ equation with variable coefficients[J].Journal of East China Normal University(Natural Sciences),2006,2006(5): 27-33.(in Chinese))
    [9] 鲜大权, 戴正德. 应用指数函数法求解变系数耦合Burgers系统[J]. 应用数学学报, 2010,33(3): 559-565.(XIAN Da-quan, DAI Zheng-de. Application of exp-function method to coupled Burgers equation with variable coefficients[J].Acta Mathematicae Applicatae Sinica,2010,33 (3): 559-565.(in Chinese))
    [10] Vaganan B M, Jeyalakshmi T. Generalized Burgers equations transformable to the Burgers equation[J].Studies in Applied Mathematics, 2011,127(3): 221-220.
    [11] QU Chang-zheng, WANG Ai-qin. The complete integrability of variable-coefficient Burgers equations[J].Communications in Theoretical Physics,1996,26(3): 369-372.
    [12] Liao S J.Beyond Pertubation: Introduction to Homotopy Analysis Method[M]. London: Chapman & Hall/CRC, 2004.
    [13] 姜丙利, 柳银萍. 带预测参数的同伦分析方法及其在两个非线性系统中的应用[J]. 华东师范大学学报(自然科学版), 2013,2013(3): 131-139, 148.(JIANG Bing-li, LIU Yin-ping. Predictor homotopy analusis method and its application to two nonlinear systems[J].Journal of East China Normal University(Natural Sciences),2013,2013(3): 131-139, 148.(in Chinese))
    [14] 宋辉, 李芬, 徐献芝. 电池系统建模中Butler-Volmer方程的同伦分析求解[J]. 应用数学和力学, 2013,34(4): 373-382.(SONG Hui, LI Fen, XU Xian-zhi. Analytical solution of Butler-Volmer equation in battery system modeling[J].Applied Mathematics and Mechanics,2013,34(4): 373-382.(in Chinese))
    [15] S·侯斯纳因, A·梅姆德, A·阿里. 二阶流体在旋转坐标系中的三维管道流动[J]. 应用数学和力学, 2012,33(3): 280-291.(Hussnain S, Mehmood A, Ali A. Three dimensional channel flow of second grade fluid in a rotating frame[J].Applied Mathematics and Mechanics,2012,33(3): 280-291.(in Chinese))
    [16] 韩祥临, 欧阳成, 宋涛, 戴孙圣. 交通拥堵迁移问题的同伦分析法[J]. 物理学报, 2013,62(17): 170203.(HAN Xiang-lin, OUYANG Cheng, SONG Tao, DAI Sun-sheng. The homotopy analusis method for a class of jamming transition problem in traffic flow[J].Acta Physica Sinica,2013,62(17): 170203.(in Chinese))
    [17] 王玉兰, 朝鲁. 利用再生核解一类变系数偏微分方程[J]. 应用数学和力学, 2008,29(1): 118-126.(WANG Yu-lan, CHAO Lu. Partial differential equation with variable coefficients[J].Applied Mathematics and Mechanics,2008,29(1): 118-126.(in Chinese))
    [18] 朱倩, 商学利, 陈文振. 六组点堆中子动力学方程组的同伦分析解[J]. 物理学报, 2012,61(7): 070201.(ZHU Qian, SHANG Xue-li, CHEN Wen-zhen. Homotopy analysis solution of point reactor kinetics equations with six-group delayed neutrons[J].Acta Physica Sinica,2012,61 (7): 070201.(in Chinese))
    [19] 钟敏玲, 刘秀湘. 脉冲时滞Hassell-Varley-Holling功能性反应捕食者-食饵系统周期解存在的充要条件[J]. 应用数学学报, 2012,35(2): 297-308.(ZHONG Min-ling, LIU Xiu-xiang. Necessary and sufficient conditions for the existence of periodic solutions in an impulsive predator-prey system with Hassell-Varley-Holling response[J].Acta Mathematicae Applicatae Sinica,2012,35(2): 297-308.(in Chinese))
    [20] 司新辉, 郑连存, 张欣欣, 司新毅. 微极性流体在上下正交移动的渗透平行圆盘间的流动[J]. 应用数学和力学, 2012,33(8): 907-918.(SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, SI Xin-yi. Flow of a micropolar fluid between two orthogonally moving porous disks[J].Applied Mathematics and Mechanics,2012,33(8): 907-918.(in Chinese))
    [21] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究[J]. 物理学报, 2013,62(4): 044701.(LI Yong-qiang, ZHANG Chen-hui, LIU Ling, DUAN Li, KANG Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity[J].Acta Physica Sinica,2013,62(4): 044701.(in Chinese))
    [22] 郑敏毅, 胡辉, 郭源君, 孙光永. 应用优化的同伦分析法求解非线性Jerk方程[J]. 振动与冲击, 2012,31(5): 21-25.(ZHENG Min-yi, HU Hui, GUO Yuan-jun, SUN Guang-yong. Optimal homotopy analysis method applied to solve a nonlinear Jerk equation[J].Journal of Vibration and Shock,2012,31(5): 21-25.(in Chinese))
    [23] Fletcher C A J. Burgers equation: a model for all reasons[C]//Noye J ed.Numerical Solutions of Partial Differential Equations. Amsterdam: North-Holland, 1982.
    [24] Cole J D. On a quaslinear parabolic equations occurring in aerodynamics[J].Quart Appl Math,1951,9: 225-236.
    [25] Hopf E. The partial differential equation[J].Communications on Pure and Applied Mathematics,1950,3(3): 201-230.
    [26] Olver P J.Applications of Lie Groups to Differential Equations[M]. New York: Springer-Verlag, 1993.
    [27] Bluman G, Anco S.Symmetry and Integration Methods for Differential Equations[M]. New York : Springer, 2002.
    [28] Ibragimov N H.A Practical Course in Differential Equations and Mathematical Modelling[M]. Beijing: Higher Education Press, 2009.
    [29] Cheviakov A, Bluman G. Multidimensional partial differential equations systems: nonlocal symmetries, nonlocal conservation laws, exact solutions[J].Journal of Mathematics and Physics,2010,51(10): 103522.
    [30] Qu C Z. Allowed transformations and symmetry classes of variable coefficient Burgers equations[J].IMA Journal of Applied Mathematics,1995,54(3): 203-225.
    [31] Sophocleous C. Transformation properties of a variable-coefficient Burgers equation[J].Chaos, Solitons & Fractals,2004,20(5): 1047-1057.
    [32] Pocheketa O A, Popovych R O. Reduction operators and exact solutions of generalized Burgers equations[J].Physics Letters A,2012,376(45): 2847-2850.
    [33] Abd-el-Maleka M B, El-Mansi S M A. Group theoretic methods applied to Burgers’ equation[J].Journal of Computational and Applied Mathematics,2000,115(1/2): 1-12.
    [34] Kutluay S, Bahadir A R, Ozdes A. Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods[J].Journal of Computational and Applied Mathematics,1999,103(2): 251-261.
    [35] Ozis T, Aksan E N, Ozdes A. A finite element approach for solution of Burgers Equation[J].Applied Mathematics and Computation,2003,139(2/3): 417-428.
    [36] Kadalbajoo M K, Awasthi A. A numerical method based on Crank-Nicolson scheme for Burgers’equation[J].Applied Mathematics and Computation,2006,182(2): 1430-1442.
    [37] Hon Y C, Mao X Z. An efficient numerical scheme for Burgers’equation[J].Applied Mathematics and Computation,1998,95(1): 37-50.
  • 加载中
计量
  • 文章访问数:  1253
  • HTML全文浏览量:  143
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-10
  • 修回日期:  2014-05-15
  • 刊出日期:  2014-07-15

目录

    /

    返回文章
    返回