留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

解抛物型方程的一族高精度隐式差分格式

詹涌强 张传林

詹涌强, 张传林. 解抛物型方程的一族高精度隐式差分格式[J]. 应用数学和力学, 2014, 35(7): 790-797. doi: 10.3879/j.issn.1000-0887.2014.07.008
引用本文: 詹涌强, 张传林. 解抛物型方程的一族高精度隐式差分格式[J]. 应用数学和力学, 2014, 35(7): 790-797. doi: 10.3879/j.issn.1000-0887.2014.07.008
ZHAN Yong-qiang, ZHANG Chuan-lin. A Family of High Accuracy Implicit Difference Schemes for Solving Parabolic Equations[J]. Applied Mathematics and Mechanics, 2014, 35(7): 790-797. doi: 10.3879/j.issn.1000-0887.2014.07.008
Citation: ZHAN Yong-qiang, ZHANG Chuan-lin. A Family of High Accuracy Implicit Difference Schemes for Solving Parabolic Equations[J]. Applied Mathematics and Mechanics, 2014, 35(7): 790-797. doi: 10.3879/j.issn.1000-0887.2014.07.008

解抛物型方程的一族高精度隐式差分格式

doi: 10.3879/j.issn.1000-0887.2014.07.008
基金项目: 国家自然科学基金(61070165);广东省教育部产学研结合项目(2011B090400458)
详细信息
    作者简介:

    詹涌强(1978—),男,广东潮州人,讲师,硕士(通讯作者. E-mail: zhanyongq@126.com)

  • 中图分类号: O241.82

A Family of High Accuracy Implicit Difference Schemes for Solving Parabolic Equations

Funds: The National Natural Science Foundation of China(61070165)
  • 摘要: 构造了求解一维抛物型方程的一族高精度隐式差分格式.首先,推导了抛物型方程解的一阶偏导数在特殊节点处的一个差分近似式,利用该差分近似式和二阶中心差商近似式用待定系数法构造了一族隐式差分格式,通过选取适当的参数使格式具有高阶截断误差;然后,利用Fourier分析法证明了当r大于1/6时,差分格式是稳定的.最后,通过数值试验将差分格式的解与具有同样精度的其它差分格式的解和精确解进行了比较,并比较了差分格式与经典差分格式的计算效率.结果说明了差分格式的有效性.
  • [1] 陆金甫, 关治. 偏微分方程数值解法[M]. 北京: 清华大学出版社, 2010: 82-85.(LU Jin-fu, GUAN Zhi. Numerical Solution of Partial Differential Equations[M]. Beijing: Tsinghua University Press, 2010: 82-85.(in Chinese))
    [2] 戴嘉尊, 邱建贤. 微分方程数值解法[M]. 南京: 东南大学出版社, 2008: 47-56, 85-87.(DAI Jia-zun, QIU Jian-xian. Numerical Solution of Differential Equations[M]. Nanjing: Southeast University Press, 2008: 47-56, 85-87.(in Chinese))
    [3] GAO Jia-quan, HE Gui-xia. An unconditionally stable parallel difference scheme for parabolic equations[J]. Applied Mathematics and Computation,2003,135(2/3): 391-398.
    [4] Sapagovas M. On the stability of a finite-difference scheme for nonlocal parabolic boundary-value problems[J]. Lithuanian Mathematical Journal,2008,48(3): 339-356.
    [5] Cash J R. Two new finite difference schemes for parabolic equations[J]. SIAM Journal on Numerical Analysis,1982,21(3): 433-446.
    [6] Ekolin G. Finite difference methods for a nonlocal boundary value problem for the heat equation[J]. BIT Numerical Mathematics,1991,31(2): 245-261.
    [7] LIU Yun-kang. Numerical solution of the heat equation with nonlocal boundary conditions[J]. Journal of Computational and Applied Mathematics,1999,110(1): 115-127.
    [8] Gulin A, Ionkin N, Morozova V. Stability criterion of difference schemes for the heat conduction equation with nonlocal boundary conditions[J]. Computational Methods in Applied Mathematics,2006,6(1): 31-55.
    [9] SUN Ping, LUO Zhen-dong, ZHOU Yan-jie. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations[J]. Applied Numerical Mathematics,2010,60(1/2): 154-164.
    [10] Borovykh N. Stability in the numerical solution of the heat equation with nonlocal boundary conditions[J]. Applied Numerical Mathematics,2002,42(1/3): 17-27.
    [11] 马明书. 一维抛物型方程的一个新的高精度显示差分格式[J]. 数值计算与计算机应用, 2001(2): 156-160.(MA Ming-shu. A new high accuracy explicit difference scheme with branching stable for solving parabolic equation of one-dimension[J]. Journal on Numerical Methods and Computer Applications,2001(2): 156-160.(in Chinese))
    [12] 马驷良. 二阶矩阵族Gn(k,Δt)一致有界的充要条件及其对差分方程稳定性的应用[J]. 高等学校计算数学学报, 1980,2(2): 41-53.(MA Si-liang. The necessary and sufficient condition for the two-order matrix family Gn(k,Δt) uniformly bounded and its applications to the stability of difference equations[J]. Numerical Mathematics: A Journal of Chinese Universities,1980,2(2): 41-53.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1708
  • HTML全文浏览量:  229
  • PDF下载量:  862
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-16
  • 修回日期:  2014-05-15
  • 刊出日期:  2014-07-15

目录

    /

    返回文章
    返回