[1] |
陆金甫, 关治. 偏微分方程数值解法[M]. 北京: 清华大学出版社, 2010: 82-85.(LU Jin-fu, GUAN Zhi. Numerical Solution of Partial Differential Equations[M]. Beijing: Tsinghua University Press, 2010: 82-85.(in Chinese))
|
[2] |
戴嘉尊, 邱建贤. 微分方程数值解法[M]. 南京: 东南大学出版社, 2008: 47-56, 85-87.(DAI Jia-zun, QIU Jian-xian. Numerical Solution of Differential Equations[M]. Nanjing: Southeast University Press, 2008: 47-56, 85-87.(in Chinese))
|
[3] |
GAO Jia-quan, HE Gui-xia. An unconditionally stable parallel difference scheme for parabolic equations[J]. Applied Mathematics and Computation,2003,135(2/3): 391-398.
|
[4] |
Sapagovas M. On the stability of a finite-difference scheme for nonlocal parabolic boundary-value problems[J]. Lithuanian Mathematical Journal,2008,48(3): 339-356.
|
[5] |
Cash J R. Two new finite difference schemes for parabolic equations[J]. SIAM Journal on Numerical Analysis,1982,21(3): 433-446.
|
[6] |
Ekolin G. Finite difference methods for a nonlocal boundary value problem for the heat equation[J]. BIT Numerical Mathematics,1991,31(2): 245-261.
|
[7] |
LIU Yun-kang. Numerical solution of the heat equation with nonlocal boundary conditions[J]. Journal of Computational and Applied Mathematics,1999,110(1): 115-127.
|
[8] |
Gulin A, Ionkin N, Morozova V. Stability criterion of difference schemes for the heat conduction equation with nonlocal boundary conditions[J]. Computational Methods in Applied Mathematics,2006,6(1): 31-55.
|
[9] |
SUN Ping, LUO Zhen-dong, ZHOU Yan-jie. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations[J]. Applied Numerical Mathematics,2010,60(1/2): 154-164.
|
[10] |
Borovykh N. Stability in the numerical solution of the heat equation with nonlocal boundary conditions[J]. Applied Numerical Mathematics,2002,42(1/3): 17-27.
|
[11] |
马明书. 一维抛物型方程的一个新的高精度显示差分格式[J]. 数值计算与计算机应用, 2001(2): 156-160.(MA Ming-shu. A new high accuracy explicit difference scheme with branching stable for solving parabolic equation of one-dimension[J]. Journal on Numerical Methods and Computer Applications,2001(2): 156-160.(in Chinese))
|
[12] |
马驷良. 二阶矩阵族Gn(k,Δt)一致有界的充要条件及其对差分方程稳定性的应用[J]. 高等学校计算数学学报, 1980,2(2): 41-53.(MA Si-liang. The necessary and sufficient condition for the two-order matrix family Gn(k,Δt) uniformly bounded and its applications to the stability of difference equations[J]. Numerical Mathematics: A Journal of Chinese Universities,1980,2(2): 41-53.(in Chinese))
|