留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反演极限与Lauwerier吸引子(Ⅱ)

郭峰 李登辉

郭峰, 李登辉. 反演极限与Lauwerier吸引子(Ⅱ)[J]. 应用数学和力学, 2014, 35(7): 798-804. doi: 10.3879/j.issn.1000-0887.2014.07.009
引用本文: 郭峰, 李登辉. 反演极限与Lauwerier吸引子(Ⅱ)[J]. 应用数学和力学, 2014, 35(7): 798-804. doi: 10.3879/j.issn.1000-0887.2014.07.009
GUO Feng, LI Deng-hui. Inverse Limit and Lauwerier Attractor(Ⅱ)[J]. Applied Mathematics and Mechanics, 2014, 35(7): 798-804. doi: 10.3879/j.issn.1000-0887.2014.07.009
Citation: GUO Feng, LI Deng-hui. Inverse Limit and Lauwerier Attractor(Ⅱ)[J]. Applied Mathematics and Mechanics, 2014, 35(7): 798-804. doi: 10.3879/j.issn.1000-0887.2014.07.009

反演极限与Lauwerier吸引子(Ⅱ)

doi: 10.3879/j.issn.1000-0887.2014.07.009
基金项目: 国家自然科学基金(11172246;11272268)
详细信息
    作者简介:

    郭峰 (1976—) 男,山东泰安人, 博士生(通讯作者. E-mail: mathguofeng@163.com)

  • 中图分类号: O185.1

Inverse Limit and Lauwerier Attractor(Ⅱ)

Funds: The National Natural Science Foundation of China(11172246;11272268)
  • 摘要: 对适当的参数, 二次映射有一条吸引的周期轨道, 并且其吸引集在单位闭区间上是稠密的.根据此性质, 文中定义了Lauwerier映射的一个上半连续分解.在此分解上存在一个可分商空间, 通过投影将二维的Lauwerier映射降为一维的二次映射, 运用二次映射反演极限空间上的移位映射来研究Lauwerier映射的动力学性质.首先对二次映射进行几乎Markov分割, 然后将每个分割区间扩张成相应的小矩形区域, 再对Lauwerier映射进行几乎Markov分割后, 从而证明了当参数小于4时, Lauwerier映射与二次映射反演极限空间上的移位映射是拓扑半共轭的.
  • [1] Ruelle D, Takens F. On the nature of turbulence[J]. Commun Math Phys,1971,20(3): 167-192.
    [2] 乐源, 谢建华. 一类双面碰撞振子的对称性尖点分岔与混沌[J]. 应用数学和力学, 2007,28(8): 991-998.(YUE Yuan, XIE Jian-hua. Symmetry, cusp bifurcation and chaos of an impact cscillator between two rigid sides[J]. Applied Mathematics and Mechanics,2007,28(8): 991-998.(in Chinese))
    [3] Leine R I, Nijmeijer H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems [M]. Springer, 2004.
    [4] LI Shi-hai. Dynamical properties of the shift maps on the inverse limit space[J]. Ergodic Theory and Dynamical Systems,1992,12(1): 95-108.
    [5] Barge M, Martin J. Chaos, periodicity, and snake-like continua[J]. Trans Amer Math Soc,1985,289(1): 355-365.
    [6] Williams R F. One-dimensional non-wandering sets[J]. Topologically,1967,6(4): 473-487.
    [7] Williams R F. Expanding attractors[J]. Publications Mathématiques de l'Institut des Hautes tudes Scientifiques,1974,43(1): 169-203.
    [8] Williams R F. The structure of attractors[C]//Actes du Congrès International des Mathematics,1970,2: 947-951.
    [9] Williams R F. The structure of Lorenz attractors[J].Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques Turbulence Seminar,1979,50(1): 73-99.
    [10] Guckenheimer J, Williams R F. Structure stability of Lorenz attractors[J]. Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques Turbulence Seminar,1979,50(1): 59-72.
    [11] Lauwerier H A. The structure of a strange attractor[J]. Physica D: Nonlinear Phenomena,1986,21(1): 146-154.
    [12] Liu Z R, Qin W X, Xie H M. The structure and dynamics of Lauwerier attractor[J]. Chinese Science Bulletin,1992,37(14): 1269-1278.
    [13] 郭峰, 李登辉, 谢建华. 反演极限与Lauwerier吸引子[J]. 应用数学和力学, 2014,35(2): 212-218.(GUO Feng, LI Deng-hui, XIE Jian-hua. Inverse limits and Lauwerier attractor [J]. Applied Mathematics and Mechanics,2014,35(2): 212-218.(in Chinese))
    [14] Swiatek C. Hyperbolicity is dense in the real quadratic family[R]. Stony Brook Preprint, 1992.
    [15] Holte S, Roe R. Inverse limits associated with the forced Van der Pol equation[J]. Journal of Dynamics and Differential Equations,1994,6(4): 601-612.
    [16] Barge M, Holte S. Nearly one-dimensional Hénon attractors and inverse limits[J]. Nonlinearity,1995,8(1): 29-42.
    [17] Maid R. Hyperbolicity, sinks and measure in one dimensional dynamics[J]. Communications in Mathematical Physics,1985,100(4): 495-524.
    [18] Singer D. Stable orbits and bifurcation of maps of the interval[J]. SIAM Journal on Applied Mathematics,1978,35(2): 260-267.
  • 加载中
计量
  • 文章访问数:  985
  • HTML全文浏览量:  107
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-04-21
  • 刊出日期:  2014-07-15

目录

    /

    返回文章
    返回