留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阶变形理论的硬夹芯夹层板横向载荷条件下的弯曲

郝加琼 李明成 邓宗白

郝加琼, 李明成, 邓宗白. 基于高阶变形理论的硬夹芯夹层板横向载荷条件下的弯曲[J]. 应用数学和力学, 2014, 35(8): 873-882. doi: 10.3879/j.issn.1000-0887.2014.08.005
引用本文: 郝加琼, 李明成, 邓宗白. 基于高阶变形理论的硬夹芯夹层板横向载荷条件下的弯曲[J]. 应用数学和力学, 2014, 35(8): 873-882. doi: 10.3879/j.issn.1000-0887.2014.08.005
HAO Jia-qiong, LI Ming-cheng, DENG Zong-bai. Bending of Sandwich Plates With Hard Cores Under Transverse Loading Based on the HighOrder Deformation Theory[J]. Applied Mathematics and Mechanics, 2014, 35(8): 873-882. doi: 10.3879/j.issn.1000-0887.2014.08.005
Citation: HAO Jia-qiong, LI Ming-cheng, DENG Zong-bai. Bending of Sandwich Plates With Hard Cores Under Transverse Loading Based on the HighOrder Deformation Theory[J]. Applied Mathematics and Mechanics, 2014, 35(8): 873-882. doi: 10.3879/j.issn.1000-0887.2014.08.005

基于高阶变形理论的硬夹芯夹层板横向载荷条件下的弯曲

doi: 10.3879/j.issn.1000-0887.2014.08.005
基金项目: 江苏省优势学科建设平台资助项目
详细信息
    作者简介:

    郝加琼(1986—),男,安徽安庆人,中级工程师,硕士(通讯作者. E-mail:HJQ_2014@163.com).

  • 中图分类号: V214.8;O342

Bending of Sandwich Plates With Hard Cores Under Transverse Loading Based on the HighOrder Deformation Theory

  • 摘要: 考虑面板和夹芯的面内刚度及抗弯刚度,基于高阶变形理论考虑各层的横向抗剪刚度,并根据横向剪应变分布情况给出应力函数,基于广义虚位移原理推导了夹层板的基本方程.详细研究了四边简支受横向载荷条件下的夹层板的弯曲,对比计算了面板与芯层厚度变化对计算结果的影响,并与一阶变形理论计算结果进行对比.研究了厚度方向的剪应变分布情况以及中面法线变形后的形态,给出了横向剪应变引起的附加转角在面内的分布情况.
  • [1] Reissner E. Finite deflections of sandwich plates[J]. Journal of the Aeronautical Science,1948,15(7): 435-440.
    [2] Reissner E. Small bending and stretching of sandwich-type shells[R]. NACA/TN-975. Washington: NASA, 1950.
    [3] Hoff N J. Bending and buckling of rectangular sandwich plates[R]. NACA/TN-2225. Washington: NASA, 1950.
    [4] 杜庆华. 三合板的一般弹性理论[J]. 物理学报, 1954,10(4): 395-412.(TU Ching-hua. General equations of sandwich plates under transverse loads and edgewise shears and compressions[J]. Acta Physica Sinica,1954,10(4): 395-412.(in Chinese))
    [5] 胡海昌. 各向同性夹层板反对称小挠度的若干问题[J]. 力学学报, 1963,6(1): 53-59.(HU Hai-chang. On some problems of the antisymetrical small deflection of isotropic sandwich plates[J]. Acta Mechanica Sinica,1963,6(1): 53-59.(in Chinese))
    [6] 周际平, 薛大为. 具有不等厚表层的硬夹心双曲夹层扁壳问题[J]. 北京工业学院学报, 1988,8(4):32-45.(ZHOU Ji-ping, XUE Da-wei. On the problems of a shallow double curved sandwich shell with hard core and face layers of unequal thickness[J]. Journal of Beijing Institute of Technology,1988,8(4):32-45.(in Chinese))
    [7] 周际平. 考虑各层抗弯刚度和夹心横向弹性的夹层板问题[J]. 北京理工大学学报, 1993,13(1): 101-107.(ZHOU Ji-ping. Problems involving plates of sandwich construction when considering the bending rigidity of each layers and transverse elasticity of the core[J]. Journal of Beijing University of Technology,1993,13(1): 101-107.(in Chinese))
    [8] 胡宁宁, 张永发. 变厚度智能硬夹心板振动分析[J]. 动力学与控制学报, 2003,1(1): 70-73.(HU Ning-ning, ZHANG Yong-fa.Vibration analysis of smart changed hard-sandwich plate[J].Journal of Dynamics and Control,2003,1(1): 70-73.(in Chinese))
    [9] 马超, 邓宗白. 四边简支硬夹芯夹层板的弯曲问题研究[J]. 应用力学学报, 2013,2(30): 196-200.(MA Chao, DENG Zong-bai. Research on bending of simply supported rectangular sandwich plates with hardened cores[J]. Chinese Journal of Applied Mechanics,2013,2(30): 196-200.(in Chinese))
    [10] 杨贺, 邓宗白. 硬夹心矩形夹层板的整体稳定性分析[J]. 固体力学学报, 2013,34(3): 251-258.(YANG He, DENG Zong-bai. The overall buckling analysis of rectangular sandwich plates with hard core[J]. Acta Mechanica Solida Sinica,2013,34(3): 251-258.(in Chinese))
    [11] Reddy J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics,1984,51(4): 745-752.
    [12] Reddy J N. A refined nonlinear theory of plates with transverse shear deformation[J]. International Journal of Solids and Structures,1984,20(9): 881-896.
    [13] Hassis H. A ‘warping’theory of plate deformation[J]. European Journal of Mechanics-A/Solids,1998,17(5): 843-853.
    [14] Hassis H. A “warping-Kirchhoff” and a “warping-Mindlin” theory of shell deformation[J]. Journal of Sound and Vibration,1999,225(4): 633-653.
    [15] Hassis H. A higher order theory for static-dynamic analysis of laminated plates using a warping model[J]. Journal of Sound and Vibration,2000,235(2): 247-260.
    [16] Ferreira A J M, Roque C M C, Jorge R M N, Kansa E J. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations[J]. Engineering Analysis With Boundary Elements,2005,29(12): 1104-1114.
    [17] Swaminathan K, Patil S S, Nataraja M S, Mahabaleswara K S. Bending of sandwich plates with anti-symmetric angle-ply face sheets-analytical evaluation of higher order refined computational models[J]. Composite Structures,2006,75(1): 114-120.
    [18] Aydogdu M. A new shear deformation theory for laminated composite plates[J]. Composite Structures,2009, 89(1): 94-101.
    [19] Berdichevsky V L. An asymptotic theory of sandwich plates[J]. International Journal of Engineering Science,2010,48(3): 383-404.
    [20] Ferreira A J M, Roque C M C, Neves A M A, Jorge R M N, Soares C M M, Reddy J N. Buckling analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear deformation theory[J]. Thin-Walled Structures,2011,49(7): 804-811.
    [21] Kheirikhah M M, Khalili S M R, Malekzadeh F K. Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory[J]. European Journal of Mechanics-A/Solids,2012,31(1): 54-66.
    [22] Grover N, Maiti D K, Singh B N. A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates[J]. Composite Structures,2013,95: 667-675.
    [23] Sahoo R, Singh B N. A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates[J]. Composite Structures,2013,105: 385-397.
    [24] Tounsi A, Houari M S A, Benyoucef S, Bedia El A A. A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates[J].Aerospace Science and Technology,2013,24(1): 209-220.
    [25] Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells [M]. New York: McGraw-Hill, 1959.
    [26] 尹思明, 阮圣磺. 变厚度矩形薄板的线性和非线性理论的弹性平衡问题的Navier解[J]. 应用数学和力学, 1985,6(6): 519-530.(YIN Si-ming, RUAN Sheng-huang. Navier solution for the elastic equilibrium problems of rectangular thin plates with variable thickness in linear and nonlinear theories[J]. Applied Mathematics and Mechanics,1985,6(6): 519-530.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  94
  • PDF下载量:  743
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-03
  • 修回日期:  2014-05-04
  • 刊出日期:  2014-08-15

目录

    /

    返回文章
    返回