留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耳蜗结构对低频信号频散特性的影响

李特 刘少宝 李蒙萌 吴莹 李跃明

李特, 刘少宝, 李蒙萌, 吴莹, 李跃明. 耳蜗结构对低频信号频散特性的影响[J]. 应用数学和力学, 2014, 35(8): 893-902. doi: 10.3879/j.issn.1000-0887.2014.08.007
引用本文: 李特, 刘少宝, 李蒙萌, 吴莹, 李跃明. 耳蜗结构对低频信号频散特性的影响[J]. 应用数学和力学, 2014, 35(8): 893-902. doi: 10.3879/j.issn.1000-0887.2014.08.007
LI Te, LIU Shao-bao, LI Meng-meng, WU Ying, LI Yue-ming. Influences of the Cochlear Structure on the Dispersion of Low-Frequency Signals[J]. Applied Mathematics and Mechanics, 2014, 35(8): 893-902. doi: 10.3879/j.issn.1000-0887.2014.08.007
Citation: LI Te, LIU Shao-bao, LI Meng-meng, WU Ying, LI Yue-ming. Influences of the Cochlear Structure on the Dispersion of Low-Frequency Signals[J]. Applied Mathematics and Mechanics, 2014, 35(8): 893-902. doi: 10.3879/j.issn.1000-0887.2014.08.007

耳蜗结构对低频信号频散特性的影响

doi: 10.3879/j.issn.1000-0887.2014.08.007
基金项目: 国家自然科学基金(11272242;91016008)
详细信息
    作者简介:

    李特(1991—),男,湖北人,硕士生(E-mail: liter356@163.com);吴莹(1967—),女,安徽人,教授,博士生导师(通讯作者. E-mail: wying36@163.com).

  • 中图分类号: R318.08

Influences of the Cochlear Structure on the Dispersion of Low-Frequency Signals

Funds: The National Natural Science Foundation of China(11272242;91016008)
  • 摘要: 耳蜗是人体最为精密的力学元器件,能处理频率从几十到几万赫兹的声信号.实验研究表明,声波进入耳蜗后,沿着基底膜传播,基底膜能够将不同频率的声信号分散到不同的位置,并为位于基底膜上的毛细胞所感知,就像一个天然的Fourier(傅里叶)滤波器.在von Békésy行波理论框架体系下,基于Manoussaki等人的三维螺旋基底膜流固耦合耳蜗模型,考虑耳蜗导管高度和基底膜刚度均为纵向梯度变化,推导出基底膜声波传播的频散方程,分别分析了基底膜刚度和耳蜗导管高度对频散特性的影响.发现耳蜗内淋巴液的存在大大提高了耳蜗对低频信号的处理能力,且捕获频率随基底膜刚度和耳蜗导管高度的减小而降低,两者梯度变化在声信号调制中起协同作用.最后,以人、沙鼠和豚鼠的具体耳蜗参数为例,得到3种生物耳蜗频率-点位图,并验证了低频段模型预测的正确性,比较分析了耳蜗频散功能与生物适应性之间的关系.
  • [1] von Békésy G. Experiments in Hearing [M]. Wever E G transl. New York, Toronto, London: McGraw-Hill Bool Company, INC, 1960.
    [2] Leveque R J, Peskin C S, Lax P D. Solution of a two-dimensional cochlea model with fluid viscosity[J]. SIAM Journal on Applied Mathematics,1988,48(1): 191-213.
    [3] Allen J. Two-dimensional cochlear fluid model: new results[J]. The Journal of the Acoustical Society of America,1977,61(1): 110-119.
    [4] Givelberg E, Bunn J. A comprehensive three-dimensional model of the cochlea[J]. Journal of Computational Physics,2003,191(2): 377-391.
    [5] 刘迎曦, 李生, 孙秀珍. 人耳传声数值模型[J]. 力学学报, 2008,40(1): 107-113.(LIU Ying-xi, LI Sheng, SUN Xiu-zhen. Numerical model of human ear for sound transmission[J].Chinese Journal of Theoretical and Applied Mechanics,2008,40(1): 107-113.(in Chinese))
    [6] 王学林, 周健军, 凌玲, 胡于进. 含主动耳蜗的人耳传声有限元模拟[J]. 振动与冲击, 2012,31(21): 41-45.(WANG Xue-lin, ZHOU Jian-jun, LING Ling, HU Yu-jin. FE simulation of sound transmission in human ear with an active cochlea model[J]. Journal of Vibration and Shock,2012,31(21): 41-45.(in Chinese))
    [7] 王学林, 胡于进. 蜗窗激励评价的有限元计算模型研究[J]. 力学学报, 2012,44(3): 622-630.(WANG Xue-lin, HU Yu-jin. Numerical study on the effect of the floating mass transducer on middle ear sound transmission[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(3): 622-630.(in Chinese))
    [8] Manoussaki D, Dimitriadis E, Chadwick R. Cochlea’s graded curvature effect on low frequency waves[J]. Physical Review Letters,2006,96(8): 88701.
    [9] Manoussaki D, Chadwick R S, Dimitriadis E. The influence of cochlear shape on low-frequency hearing[J]. Proceedings of the National Academy of Sciences,2008,105(16): 6162-6166.
    [10] Babbs C F. Quantitative reappraisal of the Helmholtz-Guyton resonance theory of frequency tuning in the cochlea[J]. Journal of Biophysics,2011,54(6): 1-16.
    [11] Kim N, Yoon Yongjin, Steele C, Puria S. Cochlear anatomy using micro computed tomography (μCT) imaging in Biomedical Optics (BiOS)[J]. Proc SPIE 6842, Photonic Therapeutics and Diagnostics IV,2008,6842: 1A-1.
    [12] Naidu R C, Mountain D C. Basilar membrane tension calculations for the gerbil cochlea[J]. The Journal of the Acoustical Society of America,2007,121(2): 994-1002.
    [13] Wada H, Sugawara M, Kobayashi T, Hozawa K, Takasaka T. Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system[J]. Hearing Research,1998,120(1): 1-6.
    [14] Greenwood D D. A cochlear frequency-position function for several species—29 years later[J]. The Journal of the Acoustical Society of America,1990,87(6): 2592-2605.
    [15] Manley G A, Narins P M, Fay R R. Experiments in comparative hearing: Georg von Békésy and beyond[J]. Hearing Research,2012,293(1): 44-50.
  • 加载中
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  138
  • PDF下载量:  1089
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-19
  • 刊出日期:  2014-08-15

目录

    /

    返回文章
    返回