[1] |
Dhmlow P, Vanag V K, Müller S C. Effect of solvents on the pattern formation in a Belousov-Zhabotinsky reaction embedded into a microemulsion[J]. Physical Review E,2014,89(1): 010902.
|
[2] |
Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation[J]. Science,2010,329(5999): 1616-1620.
|
[3] |
张丽, 刘三阳. 一类高次自催化耦合反应扩散系统的分歧和斑图[J]. 应用数学和力学, 2007,28(9): 1102-1114.(ZHANG Li, LIU San-yang. Bifurcation and patterns formation in a coupled higher autocatalator reaction diffusion system[J]. Applied Mathematics and Mechanics,2007,28(9): 1102-1114.(in Chinese))
|
[4] |
Turing A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences,1952,237(641): 37-72.
|
[5] |
Murray J D. Mathematical Biology II: Spatial Models and Biomedical Applications [M]. 3rd ed. Berlin: Springer-Verlag, 2003.
|
[6] |
林振山, 李湘如. 准三分子模型的时空结构, 1989,9(2): 183-191.(LIN Zhen-shan, LI Xiang-ru. Spatial-temporal structure of trimolecular model[J]. Acta Mathematica Scientia,1989,9(2): 183-191.(in Chinese))
|
[7] |
Tyson J, Kauffman S. Control of mitosis by a continuous biochemical oscillation[J]. Journal of Mathematical Biology,1975,1(4): 289-310.
|
[8] |
Segel L A. Mathematical Models in Molecular and Cellular Biology [M]. Cambridge: Cambridge University Press, 1980.
|
[9] |
Forbes L K, Holmes C A. Limit-cycle behaviour in a model chemical reaction: the cubic autocatalator[J]. Journal of Engineering Mathematics,1990,24(2): 179-189.
|
[10] |
Ashkenazi M, Othmer H G. Spatial patterns in coupled biochemical oscillators[J]. Journal of Mathematical Biology,1978,5(4): 305-350.
|
[11] |
McGough J S, Riley K.Pattern formation in the Gray-Scott model[J]. Nonlinear Analysis: Real World Applications,2004,5(1): 105-121.
|
[12] |
魏美华, 吴建华. 一类糖酵解模型正平衡解的存在性分析[J]. 数学学报, 2011,54(4): 553-560.(WEI Mei-hua, WU Jian-hua. Existence analysis of the positive steady-state solutions for a glycolysis model[J]. Acta Mathematica Sinica(Chinese Series),2011,54(4): 553-560.(in Chinese))
|
[13] |
Jang J, Ni W-M, Tang M. Global bifurcation and structure of Turing patterns in 1-D Lengyel-Epstein model[J]. Journal of Dynamics and Differential Equations,2005,16(2): 297-320.
|
[14] |
Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues[J]. Journal of Functional Analysis,1971,8(2): 321-340.
|
[15] |
Rabinowitz P H. Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis,1971,7(3): 487-513.
|