留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用分数阶导数模拟桩屏障对粘弹性SH波的隔离

李源 陈文 庞国飞

李源, 陈文, 庞国飞. 应用分数阶导数模拟桩屏障对粘弹性SH波的隔离[J]. 应用数学和力学, 2014, 35(9): 949-958. doi: 10.3879/j.issn.1000-0887.2014.09.001
引用本文: 李源, 陈文, 庞国飞. 应用分数阶导数模拟桩屏障对粘弹性SH波的隔离[J]. 应用数学和力学, 2014, 35(9): 949-958. doi: 10.3879/j.issn.1000-0887.2014.09.001
LI Yuan, CHEN Wen, PANG Guo-fei. Application of Fractional Calculus to Simulate the Isolation Effects of Discontinuous Pile Barriers on Viscoelastic SH Waves[J]. Applied Mathematics and Mechanics, 2014, 35(9): 949-958. doi: 10.3879/j.issn.1000-0887.2014.09.001
Citation: LI Yuan, CHEN Wen, PANG Guo-fei. Application of Fractional Calculus to Simulate the Isolation Effects of Discontinuous Pile Barriers on Viscoelastic SH Waves[J]. Applied Mathematics and Mechanics, 2014, 35(9): 949-958. doi: 10.3879/j.issn.1000-0887.2014.09.001

应用分数阶导数模拟桩屏障对粘弹性SH波的隔离

doi: 10.3879/j.issn.1000-0887.2014.09.001
基金项目: 国家重点基础研究发展计划(973计划)(2010CB832702);国家杰出青年科学基金(11125208);111引智计划(B12032)
详细信息
    作者简介:

    李源(1990—),女,河南新乡人,硕士生(E-mail: gclxliyuan@126.com);陈文(1967—),男,江苏镇江人,教授,博士生导师(通讯作者.E-mail: chenwen@hhu.edu.cn).

  • 中图分类号: O34;TU43

Application of Fractional Calculus to Simulate the Isolation Effects of Discontinuous Pile Barriers on Viscoelastic SH Waves

Funds: The National Basic Research Program of China (973 Program)(2010CB832702); The National Science Fund for Distinguished Young Scholars of China(11125208)
  • 摘要: 从粘弹性体波的三维分数阶本构方程出发,分析了软粘土中粘弹性P波和S波的频散效应,对比研究了非连续刚性桩和弹性桩对粘弹性SH波的隔离效果.利用有限差分法,分别模拟了不同桩间距与桩直径比、不同分数阶阶数及入射频率下振幅衰减系数的变化规律,并对比分析了刚性桩和弹性桩的隔震效果.数值实验表明,桩间距与桩直径比值越小,分数阶阶数越大,刚性桩隔震效果越好.对于某些特定的隔震区域,分数阶阶数越小,弹性桩隔震效果越好.
  • [1] Twersky V. Multiple scattering of radiation by an arbitrary configuration of parallel cylinders[J].The Journal of the Acoustical Society of America,1952,24(1): 42-46.
    [2] 高广运, 李志毅, 邱畅. 弹性半空间不规则异质体引起的瑞利波散射[J]. 岩土工程学报, 2005,27(4): 378-382.(GAO Guang-yun, LI Zhi-yi, QIU Chang. Scattering of Rayleigh wave from irregular obstacles in elastic half-space[J].Chinese Journal of Geotechnical Engineering,2005,27(4): 378-382.(in Chinese))
    [3] Avilés J, Sánchez-Sesma F J. Foundation isolation from vibrations using piles as barriers[J].Journal of Engineering Mechanics,1988,114(11): 1854-1870.
    [4] Assimaki D, Kallivokas L F, Kang J W, Li W, Kucukcoban S. Time-domain forward and inverse modeling of lossy soils with frequency-independentQ for near-surface applications[J].Soil Dynamics and Earthquake Engineering,2012,43: 139-159.
    [5] Day S M, Minster J B. Numerical simulation of attenuated wavefields using a Padé approximant method[J].Geophysical Journal International,1984,78(1): 105-118.
    [6] Emmerich H. PSV-wave propagation in a medium with local heterogeneities: a hybrid formulation and its application[J]. Geophysical Journal International,1992,109(1): 54-64.
    [7] Carcione J M, Kosloff D, Kosloff R. Wave propagation simulation in a linear viscoacoustic medium[J].Geophysical Journal International,1988,93(2): 393-401.
    [8] Carcione J M, Cavallini F. A rheological model for anelastic anisotropic media with applications to seismic wave propagation[J].Geophysical Journal International,1994,119(1): 338-348.
    [9] Carcione J M. Constitutive model and wave equations for linear, viscoelastic, anisotropic media[J].Geophysics,1995,60(2): 537-548.
    [10] Szabo T L, Wu J. A model for longitudinal and shear wave propagation in viscoelastic media[J].The Journal of the Acoustical Society of America,2000,107(5): 2437-2446.
    [11] Hestholm S. Composite memory variable velocity-stress viscoelastic modelling[J].Geophysical Journal International,2002,148(1): 153-162.
    [12] Borcherdt R D. Reflection—refraction of general P- and type-I S-waves in elastic and anelastic solids[J].Geophysical Journal of the Royal Astronomical Society,1982,70(3): 621-638.
    [13] Moczo P, Kristek J. On the rheological models used for time-domain methods of seismic wave propagation[J].Geophysical Research Letters,2005,32(1). doi: 10.1029/2004GL021598.
    [14] Carcione J M, Cavallini F, Mainardi F, Hanyga A. Time-domain modeling of constant-Q seismic waves using fractional derivatives[J].Pure and Applied Geophysics,2002,159(7/8): 1719-1736.
    [15] Carcione J M. Theory and modeling of constant-Q P- and S-waves using fractional time derivatives[J].Geophysics,2009,74(1). doi: 10.1190/1.3008548.
    [16] Grasso E,Chaillat S, Bonnet M, Semblat J-F. Application of the multi-level time-harmonic fast multipole BEM to 3-D visco-elastodynamics[J].Engineering Analysis With Boundary Elements,2012,〖STHZ〗 36(5): 744-758.
    [17] Mainardi F.Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models [M]. London: Imperial College Press, 2010.
    [18] 殷德顺, 任俊娟, 和成亮, 陈文. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007,26(9): 1899-1903.(YIN De-shun, REN Jun-juan, HE Cheng-liang, CHEN Wen. A new rheological model element for geomaterials[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(9): 1899-1903.(in Chinese))
    [19] Makris N. Three-dimensional constitutive viscoelastic laws with fractional order time derivatives[J].Journal of Rheology,1997,41(5): 1007-1020.
    [20] Schmidt A, Gaul L. Finite element formulation of viscoelastic constitutive equations using fractional time derivatives[J].Nonlinear Dynamics,2002,29(1/4): 37-55.
    [21] Caputo M, Carcione J M. Wave simulation in dissipative media described by distributed-order fractional time derivatives[J].Journal of Vibration and Control,2011,17(8): 1121-1130.
    [22] Zhu T, Carcione J M, Harris J M. Approximating constant-Q seismic propagation in the time domain[J].Geophysical Prospecting,2013,61(5): 931-940.
    [23] Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation[J].Journal of Computational Physics,2005,205(2): 719-736.
    [24] 汤斌. 软土固结蠕变耦合特性的试验研究与理论分析[D]. 博士学位论文. 武汉: 武汉大学, 2004.(TANG Bin. Study on tests and analysis on theory of coupled behaviors of consolidation and creep of soft clay[D]. PhD Thesis. Wuhan: Wuhan University, 2004.(in Chinese))
    [25] Woods R D. Screening of surface waves in soils[J].Journal of the Soil Mechanics and Foundations Division,1968,94(4): 951-979.
  • 加载中
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  59
  • PDF下载量:  1212
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-10
  • 修回日期:  2014-07-08
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回