留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面弹性问题自适应有限元方法的收敛性分析

刘春梅 钟柳强 舒适 肖映雄

刘春梅, 钟柳强, 舒适, 肖映雄. 平面弹性问题自适应有限元方法的收敛性分析[J]. 应用数学和力学, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003
引用本文: 刘春梅, 钟柳强, 舒适, 肖映雄. 平面弹性问题自适应有限元方法的收敛性分析[J]. 应用数学和力学, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003
LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems[J]. Applied Mathematics and Mechanics, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003
Citation: LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems[J]. Applied Mathematics and Mechanics, 2014, 35(9): 969-978. doi: 10.3879/j.issn.1000-0887.2014.09.003

平面弹性问题自适应有限元方法的收敛性分析

doi: 10.3879/j.issn.1000-0887.2014.09.003
基金项目: 湖南省自然科学基金(14JJ3135); 国家自然科学基金(11201159);全国博士学位论文作者专项资金(201212);广东省高等学校优秀青年教师培养计划(Yq2013054); 广州市珠江科技新星项目(2013J2200063)
详细信息
    作者简介:

    刘春梅(1981—), 女, 山西人, 讲师, 博士(E-mail: liuchunmei0629@163.com);舒适(1962—), 男,湖南人, 教授, 博士, 博士生导师(通讯作者. E-mail: shushi@xtu.edu.cn).

  • 中图分类号: O241.8;O242

Convergence of an Adaptive Finite Element Method for 2D Elasticity Problems

Funds: The National Natural Science Foundation of China(11201159)
  • 摘要: 针对平面弹性问题,首先采用基于最新顶点二分法的网格加密方法,给出一种不需要标记振荡项和加密单元、不需要满足“内节点”性质的自适应有限元方法.其次,通过对各层网格上解函数和误差指示子的分析,利用相邻网格层上解函数的正交性、解函数和真解函数的能量误差的上界估计、相邻网格层上误差指示子的近似压缩性等结果,从理论上严格证明了该自适应有限元方法是收敛的.最后数值实验验证了该自适应有限元方法是收敛的和鲁棒的.
  • [1] Senturia D S, Aluru N, White J. Simulating the behavior of MEMS devices: computational methods and needs[J].Computational Science & Engineering, IEEE,1997,4(1): 30-43.
    [2] Brenner S C, Li Y S. Linear finite element methods for planar linear elasticity[J].Mathematics of Computation,1992,59(200): 321-338.
    [3] Cai Z Q, Korsawe J, Starke G. An adaptive least squares mixed finite element method for the stress displacement formulation of linear elasticity[J].Numerical Methods for Partial Differential Equations,2005,21(1): 132-148.
    [4] 陈竹昌, 王建华, 王卫中. 自适应多层网格有限元求解应力集中问题[J]. 同济大学学报, 1994, 22(3): 203-208.(CHEN Zhu-chang, WANG Jian-hua, WANG Wei-zhong. Adaptive multigrid FEM for stress concentration[J].Journal of Tongji University,1994,22(3): 203-208.(in Chinese))
    [5] 梁力, 林韵梅. 有限元网格修正的自适应分析及其应用[J]. 工程力学, 1995,12(2): 109-118.(LIANG Li, LIN Yun-mei. Adaptive mesh refinement of finite element method and its application [J].Engineering Mechanics,1995,12(2): 109-118.(in Chinese))
    [6] Whiler T P. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problem[J].Mathematics of Computation,2006,75(255): 1087-1102.
    [7] Lonsing M, Verfürth R. A posteriori error estimators for mixed finite element methods in linear elasticity[J].Numerische Mathematik,2004,97(4): 757-778.
    [8] 刘春梅, 肖映雄, 舒 适, 钟柳强. 弹性力学问题自适应有限元及其局部多重网格法[J]. 工程力学, 2012,29(9): 60-67.(LIU Chun-mei, XIAO Ying-xiong, SHU Shi, ZHONG Liu-qiang. Adaptive finite element method and local multigrid method for elasticity problems[J].Engineering Mechanics,2012,29(9): 60-67.(in Chinese))
    [9] Carstemsen C. Convergence of adaptive finite element methods in computational mechanics[J].Applied Numerical Mathematics,2009,59(9): 2119-2130.
    [10] Cascon J, Kreuzer C, Nochetto R, Siebert K. Quasi-optimal convergence rate for an adaptive finite element method[J]. SIAM Journal on Numerical Analysis,2008,46(5): 2524-2550.
    [11] Bonsch E. Local mesh refinement in 2 and 3 dimensions[J].IMPACT of Computing in Science and Engineering,1991,3(3): 181-191.
    [12] Scott L R, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions[J].Mathematics of Computation,1990,54(190): 483-493.
  • 加载中
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  171
  • PDF下载量:  868
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-20
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回