留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅水中度振幅孤立波解的分支

李春海 朱文静 陈爱永 王红浩

李春海, 朱文静, 陈爱永, 王红浩. 浅水中度振幅孤立波解的分支[J]. 应用数学和力学, 2014, 35(9): 1002-1010. doi: 10.3879/j.issn.1000-0887.2014.09.006
引用本文: 李春海, 朱文静, 陈爱永, 王红浩. 浅水中度振幅孤立波解的分支[J]. 应用数学和力学, 2014, 35(9): 1002-1010. doi: 10.3879/j.issn.1000-0887.2014.09.006
QIN Yu-yue, DENG Zi-chen, HU Wei-peng, . Bifurcations of Solitary Wave Solutions to the Shallow Water Equation of Moderate Amplitude[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1002-1010. doi: 10.3879/j.issn.1000-0887.2014.09.006
Citation: QIN Yu-yue, DENG Zi-chen, HU Wei-peng, . Bifurcations of Solitary Wave Solutions to the Shallow Water Equation of Moderate Amplitude[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1002-1010. doi: 10.3879/j.issn.1000-0887.2014.09.006

浅水中度振幅孤立波解的分支

doi: 10.3879/j.issn.1000-0887.2014.09.006
基金项目: 国家自然科学基金(11161013;11361017); 广西自然科学基金(2014GXNSFBA118007); 广西高等学校优秀中青年骨干教师培养工程
详细信息
    作者简介:

    李春海(1982—),男,山东沂南人,助理研究员,硕士(E-mail: chunhai2001@163.com);陈爱永(1977—),男,湖南隆回人,副教授,博士(通讯作者. E-mail: aiyongchen@163.com).

  • 中图分类号: O357.1

Bifurcations of Solitary Wave Solutions to the Shallow Water Equation of Moderate Amplitude

Funds: The National Natural Science Foundation of China(11161013;11361017)
  • 摘要: 利用平面动力系统分支方法研究浅水中度振幅方程的定性行为和孤立波解.给出了系统在不同参数条件下的相图.获得了光滑孤立波、cuspon解和周期波解的隐式表达式.对方程的光滑孤立波解、cuspon解和周期波解进行了数值模拟.获得的结果完善了相关文献已有的结果.
  • [1] Camassa R, Holm D. An integrable shallow water equation with peaked solitons[J].Phys Rev Lett,1993,71(11): 1661-1664.
    [2] Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J].Archive for Rational Mechanics and Analysis,2009,192(1): 165-186.
    [3] Geyer A. Solitary traveling water waves of moderate amplitude[J].Journal of Nonlinear Mathematical Physics,2012,19(supp 1): 1240010.
    [4] Duruk Mutlubas N, Geyer A. Orbital stability of solitary waves of moderate amplitude in shallow water[J].Journal of Differential Equations,2013,255(2): 254-263.
    [5] 李继彬. (2+1)-维广义Benney-Luke方程的精确行波解[J]. 应用数学和力学, 2008,29(11): 1261-1267.(LI Ji-bin. Exact traveling wave solutions to 2D-generalized Benney-Luke equation [J].Applied Mathematics and Mechanics,2008,29(11): 1261-1267.(in Chinese))
    [6] 冯大河, 李继彬. Jaulent-Miodek方程的行波解分支[J]. 应用数学和力学, 2007,28(8): 894-900.(FENG Da-he, LI Ji-bin. Bifurcations of travelling wave solutions for Jaulent-Miodek equations[J].Applied Mathematics and Mechanics,2007,28(8): 894-900.(in Chinese))
    [7] 戴振祥, 徐园芬. 广义的Zakharov方程和Ginzburg-Landau方程的精确解和行波解分支[J]. 应用数学和力学, 2011,32(12): 1509-1516.(DAI Zhen-xiang, XU Yuan-fen. Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg-Landau equation[J].Applied Mathematics and Mechanics,2011,32(12): 1509-1516.(in Chinese))
    [8] CHEN Ai-yong, HUANG Wen-tao, LI Ji-bin. Qualitative behavior and exact travelling wave solutions of the Zhiber-Shabat equation[J].Journal of Computational and Applied Mathematics,2009,230(2): 559-569.
    [9] Lenells J. Traveling wave solutions of the Camassa-Holm equation[J].Journal of Differential Equations,2005,217(2): 393-430.
    [10] LI Ji-bin.Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solution [M]. Beijing: Science Press, 2013.
  • 加载中
计量
  • 文章访问数:  1194
  • HTML全文浏览量:  139
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-18
  • 修回日期:  2014-06-25
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回