留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性强阻尼扰动发展方程的解

史娟荣 石兰芳 莫嘉琪

史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010
引用本文: 史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010
SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010
Citation: SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1046-1054. doi: 10.3879/j.issn.1000-0887.2014.09.010

一类非线性强阻尼扰动发展方程的解

doi: 10.3879/j.issn.1000-0887.2014.09.010
基金项目: 国家自然科学基金(11202106);江苏省自然科学基金(13KJB170016)
详细信息
    作者简介:

    史娟荣(1981—),女,安徽宣城人,副教授,硕士(通讯作者. E-mail: ahjdshjr@126.com).

  • 中图分类号: O175.29

Solutions to a Class of Nonlinear Strong-Damp Disturbed Evolution Equations

Funds: The National Natural Science Foundation of China(11202106)
  • 摘要: 研究了在数学、力学中广泛出现的一类三阶非线性强阻尼发展扰动偏微分方程,并求其近似解析解.首先,构造一个泛函同伦映射,将方程的解表示以人工参数的幂级数形式,代入同伦映射,得到一个非线性扰动方程解的逐次迭代关系式,并考虑对应的一个无扰动项情形下的强阻尼发展方程,利用Fourier变换理论,求出其精确解.其次,以得到的精确解为同伦映射迭代式的初始函数,通过非线性扰动方程解的迭代关系式,再用Fourier变换法求解对应的方程.最后,便依次地得到了非线性强阻尼发展扰动偏微分方程的各次近似解析解.用上述方法得到的各次近似解,具有便于求解、精度高等特点.
  • [1] Parkes E J. Some periodic and solitary travelling-wave solutions of the short-pulse equation[J].Chaos Solitons & Fractals, 2008,38(1): 154-159.
    [2] Sirendaoreji, SUN Jiong. Auxiliary equation method for solving nonlinear partial differential equations[J].Physics Letters A,2003,309(5/6): 387-396.
    [3] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean[J].Nature,2002,415: 603-608.
    [4] Gu D, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J].Science,1997,275(5301): 805-807.
    [5] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论[J]. 物理学报, 2005,54(1):1-5.(PAN Liu-xian, ZUO Wei-ming, YAN Jia-ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation[J].Acta Physica Sinica,2005,54(1): 1-5.(in Chinese))
    [6] 吕大昭. 非线性发展方程的丰富的Jacobi椭圆函数解[J]. 物理学报, 2005,54(10): 4501-4505.(Lü Da-zhao. Abundant Jacobi elliptic function solutions of nonlinear evolution equations[J].Acta Physica Sinica,2005,54(10): 4501-4505.(in Chinese))
    [7] WU Jian-ping. Bilinear B-cklund transformation for a variable-coefficient Kadomtsev-Petviashvili equation[J].Chinese Physics Letters,2011,28(6):060207. doi: 10.1088/0256-307X/28/6/060207.
    [8] 吕大昭, 崔艳英, 刘长河, 张艳. mKdV-sine-Gordon方程丰富的相互作用[J]. 物理学报, 2010,59(10): 6793-6798.(Lü Da-zhao, CUI Yan-ying, LIU Chang-he, ZHANG Yan. Abundant interaction solutions of the mKdV-sine-Gordon equation [J].Acta Physica Sinica,2010, 59(10): 6793-6798.(in Chinese))
    [9] ZUO Jin-ming, ZHANG Yao-ming. The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq Burgers equation[J].Chinese Physics B,2011,20(1):010205. doi: 10.1088/1674-1056/20/1/010205.
    [10] 庞晶, 靳玲花, 赵强. 变系数非线性发展方程的 G′/G 的展开解[J]. 物理学报, 2012,61(14): 140201.(PANG Jing, JIN Ling-hua, ZHAO Qiang. Nonlinear evolution equation with variable coefficientG′/Gexpansion solution[J].Acta Physica Sinica,2012, 61(14): 140201.(in Chinese))
    [11] XIN Xiang-peng, LIU Xi-qiang, ZHANG Lin-lin. Symmetry reduction, exact solutions and conservation laws of the modified Kadomtzev-Patvishvili-II equation[J].Chinese Physics Letters,2011, 28(2):020201. doi: 10.1088/0256-307X/28/2/020201.
    [12] 李宁, 刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解[J]. 物理学报, 2013,62(16): 160203.(LI Ning, LIU Xi-qiang. Symmetries, reductions and exact solutions of Broer-Kau-Kupershmidt system[J].Acta Physica Sinica,2013, 62(16): 160203.(in Chinese))
    [13] 石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解[J]. 物理学报, 2013,62(4): 040203.(SHI Lan-fang, MO Jia-qi. Solution of a class of rotational relativistic rotation dynamic equation using the generalized variational iteration theory[J].Acta Physica Sinica,2013,62(4): 040203.(in Chinese))
    [14] 石兰芳, 林万涛, 林一骅, 莫嘉琪. 一类非线性方程类孤波的近似解法[J]. 物理学报, 2013,62(1): 010201.(SHI Lan-fang, LIN Wan-tao, LIN Yi-hua, MO Jia-qi. Approximate method of solving solitary-like wave for a class of nonlinear equation[J].Acta Physica Sinica,2013, 62(1): 010201.(in Chinese))
    [15] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解[J]. 物理学报, 2013,62(11): 110202.(HAN Xiang-lin, ZHAO Zhen-jiang, CHENG Rong-jun, MO Jia-qi. Solution of the transfer models of femtosecond pulse laser for nano metal film[J].Acta Physica Sinica,2013, 62(11): 110202.(in Chinese))
    [16] XIE Feng, LIN Wan-tao, LIN Yi-hua, MO Jia-qi. Disturbed solution of the El Nio-southern oscillation sea-air delayed oscillator[J].Chinese Physics B,2011,20(1): 010208. doi: 10.1088/1674-1056/20/1/010208.
    [17] 莫嘉琪, 林万涛, 杜增吉. 具双参数非线性高阶椭圆型方程的奇摄动解[J]. 系统科学与数学, 2013,33(2): 217-221.(MO Jia-qi, LIN Wan-tao, DU Zeng-ji. A singularly perturbed solution for nonlinear higher order elliptic equations with two parameters[J].Journal of Systems Science and Mathematical Sciences,2013,33(2): 217-221.(in Chinese))
    [18] 莫嘉琪, 林万涛. 一类奇摄动燃烧ROBIN问题解的渐近性态[J]. 系统科学与数学, 2012,32(11): 1413-1418.(MO Jia-qi, LIN Wan-tao. The asymptotic behavior for a class of burning singularly perturbed Robin problem[J].Journal of Systems Science and Mathematical Sciences,2012,32(11): 1413-1418.(in Chinese))
    [19] MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J].Communications in Theoretical Physics,2011,55(3): 387-390.
    [20] Liao S J.Beyond Perturbation: Introduction to the Homotopy Analysis Method [M]. New York: CRC Press, 2004.
    [21] 何吉欢. 工程和科学计算中的近似非线性分析方法[M]. 郑州: 河南科学技术出版社, 2002.(HE Ji-huan.Approximate Nonlinear Analytical Methods in Engineering and Sciences [M]. Zhengzhou: Henan Science and Technology Press, 2002.(in Chinese))
    [22] de Jager E M, JIANG Fu-ru.The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing, 1996.
    [23] Barbu L, Morosanu G.Singularly Perturbed Boundary-Value Problems [M]. Basel: Birkhuserm Verlag AG, 2007.
  • 加载中
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  102
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-07
  • 修回日期:  2014-06-20
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回