留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复变量热传导方程的动力系统

熊辉 杨光

熊辉, 杨光. 复变量热传导方程的动力系统[J]. 应用数学和力学, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011
引用本文: 熊辉, 杨光. 复变量热传导方程的动力系统[J]. 应用数学和力学, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011
XIONG Hui, YANG Guang. Dynamics of a Complex-Valued Heat Equation[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011
Citation: XIONG Hui, YANG Guang. Dynamics of a Complex-Valued Heat Equation[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1055-1062. doi: 10.3879/j.issn.1000-0887.2014.09.011

复变量热传导方程的动力系统

doi: 10.3879/j.issn.1000-0887.2014.09.011
基金项目: 国家自然科学基金(11271069)
详细信息
    作者简介:

    熊辉(1978—), 副教授, 博士(通讯作者. E-mail: xhui@163.com).

  • 中图分类号: O193; O175.26

Dynamics of a Complex-Valued Heat Equation

Funds: The National Natural Science Foundation of China(11271069)
  • 摘要: 探讨一个复变量热方程的Cauchy问题,其中的非线性项是倒数型的.先提出一些全局解的存在性与不存在性的判定准则,然后采用解平面的不变子集的变换,证明了当初始值渐近于常数时,解是否会在无穷远处消失或在任意时间内全局存在,均依赖于初始值的渐近极限值.
  • [1] Kawarada H. On solutions of initial-boundary problem for ut=uxx+1/(1-u)[J].Publications of the Research Institute for Mathematical Sciences,1974,10(3): 729-736.
    [2] Filippas S, Guo J S. Quenching profiles for one-dimensional semilinear heat equations[J].Quarterly of Applied Mathematics,1993,51(4): 713-729.
    [3] Guo Z, Wei J. On the Cauchy problem for a reaction-diffusion equation with a singular nonlinearity[J].Journal of Differential Equations,2007,240(2): 279-323.
    [4] Ferreira R, de Pablo A, Quirós F, Rossi J D. Non-simultaneous quenching in a system of heat equations coupled at the boundary[J].Zeitschrift für Angewandte Mathematik und Physik ZAMP,2006,57(4): 586-594.
    [5] Zheng S, Wang W. Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system[J].Nonlinear Analysis: Theory, Methods & Applications,2008,69(7): 2274-2285.
    [6] Zhi Y, Mu C. Non-simultaneous quenching in a semilinear parabolic system with weak singularities of logarithmic type[J].Applied Mathematics and Computation,2008,196(1): 17-23.
    [7] Mu C, Zhou S, Liu D. Quenching for a reaction-diffusion system with logarithmic singularity[J].Nonlinear Analysis: Theory, Methods & Applications,2009,71(11): 5599-5605.
    [8] YAN Dong-mei, SUN Yu-xin, YANG Jia-ling. Analytical dynamic model of elastic-plastic pipe-on-pipe impact[J].Applied Mathematics and Mechanics(English Edition ), 2013,34(6): 731-746.
    [9] Giga Y, Seki Y, Umeda N. Mean curvature flow closes open ends of noncompact surfaces of rotation[J].Communications in Partial Differential Equations,2009,34(11): 1508-1529.
    [10] Giga Y, Seki Y, Umeda N. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow[J].Discrete and Continuous Dynamical Systems(DCDS-A ), 2011,29(4): 1463-1470.
    [11] Guo J S, Ninomiya H, Shimojo M, Yanagida E. Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity[J].Transactions of the American Mathematical Society,2013,365(5): 2447-2467.
    [12] Matano H, Merle F. Classification of type I and type II behaviors for a supercritical nonlinear heat equation[J]. Journal of Functional Analysis,2009,256(4): 992-1064.
    [13] Seki Y. On directional blow-up for quasilinear parabolic equations with fast diffusion[J].Journal of Mathematical Analysis and Applications,2008,338(1): 572-587.
    [14] Shimojo M, Umeda N. Blow-up at space infinity for solutions of cooperative reaction-diffusion systems[J].Funkcialaj Ekvacioj,2011,54(2): 315-334.
  • 加载中
计量
  • 文章访问数:  945
  • HTML全文浏览量:  85
  • PDF下载量:  819
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-25
  • 修回日期:  2014-01-13
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回