[1] |
Oldham K B, Spanier J.The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order[M]. New York: Academic Press, 1974.
|
[2] |
Miller K S, Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: John Wiley & Sons Inc, 1993.
|
[3] |
Podlubny I.Fractional Differential Equations[M]. New York: Academic Press, 1999.
|
[4] |
Samko S G, Kilbas A A, Marichev O I.Fractional Integrals and Derivatives[M]. New York: Gordon and Breach Science Publishers, 1993.
|
[5] |
Mandelbrot B B.The Fractal Geometry of Nature[M]. New York: W H Freeman, 1982.
|
[6] |
Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J].Journal of Rheology,1983,27(3): 201-210.
|
[7] |
Bagley R L, Torvik P J. Fractional calculus—a different approach to the analysis of viscoelastically damped structures[J].AIAA Journal,1983,21(5): 741-748.
|
[8] |
Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures[J].AIAA Journal,1985,23(6): 918-925.
|
[9] |
Koeller R C. Applications of fractional calculus to the theory of viscoelasticity[J].Journal of Applied Mechanics-Transactions of the ASME,1984,51(2): 299-307.
|
[10] |
Koeller R C, Wisconsin P. Polynomial operators, stieltjes convolution and fractional calculus in hereditary mechanics[J].Acta Mechanica,1986,58(3/4): 251-264.
|
[11] |
Xu Y, Gu R C, Zhang H Q, Li D X. Chaos in diffusionless Lorenz system with a fractional order and its control[J].International Journal of Bifurcation and Chaos,2012,22(4). doi: 10.1142/S0218127412500885.
|
[12] |
Xu Y, Li Y G, Liu D, Jia W T, Huang H. Responses of Duffing oscillator with fractional damping and random phase[J].Nonlinear Dynamics,2013,74(3): 745-753.
|
[13] |
Xu Y,Wang H. Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control[J].Abstract and Applied Analysis,2013,2013. Article ID: 948782.
|
[14] |
Gaul L, Klein P, Kempfle S. Impulse-response function of an oscillator with fractional derivative in damping description[J].Mechanics Research Communications,1989,16(5): 297-305.
|
[15] |
Suarez L E,Shokooh A. An eigenvector expansion method for the solution of motion containing fractional derivatives[J].Journal of Applied Mechanics-Transactions of the ASME,1997,64(3): 629-635.
|
[16] |
李根国, 朱正佑, 程昌钧. 具有分数导数型本构关系的粘弹性柱的动力稳定性[J]. 应用数学和力学, 2001,22(3): 250-258.(LI Gen-guo, ZHU Zheng-you, CHENG Chang-jun. Dynamical stability of viscoelastic column with fractional derivative constitutive relation[J].Applied Mathematics and Mechanics,2001,22(3): 250-258.(in Chinese))
|
[17] |
Wahi P, Chatterjee A. Averaging oscillations with small fractional damping and delayed terms[J].Nonlinear Dynamics,2004,38(1/4): 3-22.
|
[18] |
Diethelm K, Walz G. Numerical solution of fractional order differential equations by extrapolation[J].Numerical Algorithms,1997,16(3/4): 231-253.
|
[19] |
Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29(1/4): 3-22.
|
[20] |
Ford N J, Simpson C. The numerical solution of fractional differential equations: speed versus accuracy[J].Numerical Algorithms,2001,26(4): 333-346.
|
[21] |
Cuesta E, Palencia C A. Fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces[J].Applied Numerical Mathematics,2003,45(2/3): 139-159.
|
[22] |
Katsikadelis J T, Nerantzaki M S. The boundary element method for nonlinear problems[J].Engineering Analysis of Boundary Elements,1999,23(5/6): 365-373.
|
[23] |
Katsikadelis J T.The analog equation method: a boundary-only integral equation method for nonlinear static and dynamic problems in general bodies[J].Theoretical and Applied Mechanics,2002(27): 13-38.
|
[24] |
Katsikadelis J T. Numerical solution of multi-term fractional differential equations[J].Journal of Applied Mathematics and Mechanics,2009,89(7): 593-608.
|
[25] |
孙春艳, 徐伟. 分数阶导数阻尼下非线性随机振动结构响应的功率谱密度估计[J]. 应用力学学报,2013,30(3): 401-405.(SUN Chun-yan, XU Wei. Response power spectral density estimate of a fractionally damped nonlinear oscillator[J].Chinese Journal of Applied Mechanics,2013,30(3): 401-405.(in Chinese))
|