留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受迫振动的超临界输液管Galerkin数值模拟

黄慧春 张艳雷 陈立群

黄慧春, 张艳雷, 陈立群. 受迫振动的超临界输液管Galerkin数值模拟[J]. 应用数学和力学, 2014, 35(10): 1100-1106. doi: 10.3879/j.issn.1000-0887.2014.10.004
引用本文: 黄慧春, 张艳雷, 陈立群. 受迫振动的超临界输液管Galerkin数值模拟[J]. 应用数学和力学, 2014, 35(10): 1100-1106. doi: 10.3879/j.issn.1000-0887.2014.10.004
HUANG Hui-chun, ZHANG Yan-lei, CHEN Li-qun. A Galerkin Numerical Method for the Pipe Conveying Supercritical Fluid Under Forced Vibration[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1100-1106. doi: 10.3879/j.issn.1000-0887.2014.10.004
Citation: HUANG Hui-chun, ZHANG Yan-lei, CHEN Li-qun. A Galerkin Numerical Method for the Pipe Conveying Supercritical Fluid Under Forced Vibration[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1100-1106. doi: 10.3879/j.issn.1000-0887.2014.10.004

受迫振动的超临界输液管Galerkin数值模拟

doi: 10.3879/j.issn.1000-0887.2014.10.004
基金项目: 国家自然科学基金(11302122);上海高校青年教师培养资助计划(ZZEGD13011)
详细信息
    作者简介:

    黄慧春(1961—),女,江苏人,副教授(Tel: +86-21-50215021-8216;E-mail: hchuang@sspu.edu.cn);张艳雷(1980—),男,山西人,博士(通讯作者. Tel: +86-21-50215021-8216;E-mail: ylzhang@sspu.edu.cn).

  • 中图分类号: O322

A Galerkin Numerical Method for the Pipe Conveying Supercritical Fluid Under Forced Vibration

Funds: The National Natural Science Foundation of China(11302122)
  • 摘要: 当流速超过临界值,输液管的直线平衡位形会发生失稳,但是系统会重新稳定在新的曲线平衡位置.通过引入坐标变换的方法,动力学模型转变为含有变系数的偏微分控制方程.采用4阶Galerkin截断的方法,使控制方程转变为常微分方程.给出具体的数值算例,发现4阶截断的固有频率要比2阶截断的固有频率更精确.同时,计算出前两阶固有频率出现可公度的情况,从而激发2∶1内共振现象.利用Runge-Kutta数值模拟的方法,在发生内共振流速范围的特定区域进行大量数值运算,结果表明高维系统的条件下,管道的不同径向坐标点的横向位置处,均出现软硬特性,而在内外共振完全调谐时,出现双跳跃现象.
  • [1] Paidoussis M P.Fluid-Structure Interactions: Slender Structures and Axial Flow [M]. Vol1. London: Academic, 1998.
    [2] Paidoussis M P.Fluid-Structure Interactions: Slender Structures and Axial Flow [M]. Vol2. London: Academic, 2004.
    [3] Jin J D, Zou G S. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid[J].Journal of Sound and Vibration,2003,260(5): 783-805.
    [4] Jin J D, Zou G S. Parametric resonances of supported pipes conveying pulsating fluid[J].Journal of Fluids and Structures,2005,20(6): 763-783.
    [5] 娜扎 M, 沙希德 F, 阿克拉姆 M S, 苏丹 Q. Maxwell流体在震荡的矩形输送管道中的流动[J]. 应用数学和力学, 2012,33(6): 678-691.(Nazar M, Shahid F, Akram M S, Sultan Q. Flow on oscillating rectangular duct for Maxwell fluid[J].Applied Mathematics and Mechanics,2012,33(6): 678-691.(in Chinese))
    [6] Ibrahim R A. Overview of mechanics of pipes conveying fluids—part I: fundamental studies[J].ASME Journal of Pressure Vessel Technology,2010,132(3): 034001. doi: 10.1115/1.4001271.
    [7] Ibrahim R A. Overview of mechanics of pipes conveying fluids—part II: applications and fluidelastic problems[J].ASME Journal of Pressure Vessel Technology,2011,133(2): 024001. doi: 10.1115/1.4001270.
    [8] Ghayesh M H. Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance[J].International Journal of Mechanical Sciences,2011,53(11): 1022-1037.
    [9] Ghayesh M H, Kafiabad H A, Reid T. Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam[J].International Journal of Solids and Structures,2012,49(1): 227-243.
    [10] Ding H, Chen L Q. Galerkin methods for natural frequencies of high-speed axially moving beams[J].Journal of Sound and Vibration,2010,329(17): 3484-3494.
    [11] Ding H, Zhang G C, Chen L Q. Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions[J].Mechanics Research Communications,2011,38(1): 52-56.
    [12] Ding H, Chen L Q. Equilibria of axially moving beams in the supercritical regime[J].Archive of Applied Mechanics,2011,81(1): 51-64.
    [13] Ding H, Zhang G C, Chen L Q. Supercritical vibration of nonlinear coupled moving beams based on discrete Fourier transform[J].International Journal of Non-Linear Mechanics,2012,47(10): 1095-1104.
    [14] Ding H, Zhang G C, Chen L Q, Yang S P. Forced vibrations of supercritically transporting viscoelastic beams[J].Journal of Vibration and Acoustics,2012,134(5): 051007. doi: 10.1115/1.4006184.
    [15] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(I)[J]. 应用数学和力学, 2006,27(7): 819-832.(XU Jian, YANG Qian-Biao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid(I)[J].Applied Mathematics and Mechanics,2006,27(7): 819-832.(in Chinese))
    [16] Zhang Y L, Chen L Q. Internal resonance of pipes conveying fluid in the supercritical regime[J].Nonlinear Dynamics,2012,67(2): 1505-1514.
    [17] Zhang Y L, Chen L Q. External and internal resonances of the pipe conveying fluid in the supercritical regime[J].Journal of Sound and Vibration,2013,332(9): 2318-2337.
    [18] 张艳雷. 超临界输液管横向振动的非线性动力学分析[D]. 博士学位论文. 上海: 上海大学, 2012.(ZHANG Yan-lei. Nonlinear dynamics of transverse vibrations of pipes conveying fluid in the supercritical regime[D]. PhD Thesis. Shanghai: Shanghai University, 2012.(in Chinese))
    [19] 车小玉, 段梦兰, 曾霞光, 高攀, 庞熠骞. 双层管道整体屈曲实验研究及数值模拟[J]. 应用数学和力学, 2014,35(2): 188-201.(CHE Xiao-yu, DUAN Meng-lan, ZENG Xia-guang, GAO Pan, PANG Yi-qian. Experimental sturdy and numerical simulation of global buckling of pipe-in-pipe systems[J].Applied Mathematics and Mechanics,2014,35(2): 188-201.(in Chinese))
    [20] Wickert J A. Non-linear vibration of a traveling tensioned beam[J].International Journal of Non-Linear Mechanics,1992,27(3): 503-517.
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  141
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-09-10
  • 刊出日期:  2014-10-15

目录

    /

    返回文章
    返回