[1] |
Chen X H, Lu J, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J].Scripta Materialia,2005,52(10): 1039-1044.
|
[2] |
Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Simultaneously increasing the ductility and strength of nanostructured alloys[J].Advanced Materials,2006,18(17): 2280-2283.
|
[3] |
Waltz L, Retraint D, Roos A,Olier P. Combination of surface nanocrystallization and co-rolling: creating multilayer nanocrystalline composites[J].Scripta Materialia,2009,60(1): 21-24.
|
[4] |
Chen A Y, Li D F, Zhang J B, Song H W, Lü J. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors[J].Scripta Materialia,2008,59(6): 579-582.
|
[5] |
Cortes P, Cantwell W J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates[J].Composites Science and Technology,2006,66(13): 2306-2316.
|
[6] |
Petch N J. The fracture of metals[J].Progress in Metal Physics,1954, 5: 1-52.
|
[7] |
Gleiter H. Nanocrystalline materials[J].Progress in Materials Science,1989,33: 223-315.
|
[8] |
陈勇, 庞宝君, 郑伟, 张志远. 纤维金属层板低速冲击实验和数值仿真[J]. 复合材料学报, 2014,31(3): 733-740. doi: 10.13801/j.cnki.fhclxb.2014.03.026.(CHEN Yong, PANG Bao-jun, ZHENG Wei, ZHANG Zhi-yuan. Experimental tests and numerical simulation on low velocity impact performance of fiber metal laminates[J].Acta Materiae Compositae Sinica,2014,31(3): 733-740. doi: 10.13801/j.cnki.fhclxb.2014.03.026.(in Chinese))
|
[9] |
马玉娥, 胡海威, 熊晓枫. 低速冲击下FML、铝板和复材的损伤对比研究[J]. 航空学报, 2014,35(1): 1-10.(MA Yu-e, HU Hai-wei, XIONG Xiao-feng. Comparison of damage in fibre metal laminates, aluminium and composite panel subjected to low-velocity impact[J].Acta Aeronautica et Astronautica Sinica,2014,35(1): 1-10.(in Chinese))
|
[10] |
Seo H, Hundley J, Hahn H T, Yang J M. Numerical simulation of glass-fiber-reinforced aluminium laminates with diverse impact damage[J].AIAA Journal,2010,48(3): 676-687.
|
[11] |
Sadighi M, Parnanen T, Alderliesten R C, Sayeaftabi M, Benedictus R. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber-metal laminates [J].Applied Composite Materials,2012,19(3): 545-559.
|
[12] |
陈绍杰, 朱珊, 李萍. 纤维增强铝合金层板的发展与应用[J]. 航空学报, 1991,12(12): 589-597.(CHEN Shao-jie, ZHU Shan, LI Ping. Development and application of a fiber reinforced aluminium laminates[J].Acta Aeronautica et Astronautica Sinica,1991,12(12): 589-597.(in Chinese))
|
[13] |
Alderliesten R C, Benedictus R. Fiber/metal composite technology for future primary aircraft structures[J].Journal of Aircraft,2008,45(4): 1182-1189.
|
[14] |
Guo X, Leung A Y T, Chen A Y, Ruan H H, Lü J. Investigation of non-local cracking in layered stainless steel with nanostructrued interface[J].Scripta Materialia,2010,63(4): 403-406.
|
[15] |
Chen X H, Lü J, Lu L, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J].Scripta Materialia,2005,52(10):1039-1044.
|
[16] |
Zhang H W, Hei Z K, Liu G, Lü J, Lu K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta Materialia,2003,51(7): 1871-1881.
|
[17] |
Cho K T, Song K, Oh S H, Lee Y K. Surface hardening of aluminum alloy by shot peening treatment with Zn based ball[J].Materials Science and Engineering A,2012,543(13): 44-49.
|
[18] |
Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8): 2075-2084.
|
[19] |
Volt A, Gunnink J W.Fiber Metal Laminates [M]. Netherlands: Kluwer Academic Publishers, 2001: 73-75.
|