留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响

万云 王振清 周利民 章继峰

万云, 王振清, 周利民, 章继峰. 表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响[J]. 应用数学和力学, 2014, 35(10): 1107-1114. doi: 10.3879/j.issn.1000-0887.2014.10.005
引用本文: 万云, 王振清, 周利民, 章继峰. 表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响[J]. 应用数学和力学, 2014, 35(10): 1107-1114. doi: 10.3879/j.issn.1000-0887.2014.10.005
WAN Yun, WANG Zhen-qing, ZHOU Li-min, ZHANG Ji-feng. Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Aluminium Laminates[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1107-1114. doi: 10.3879/j.issn.1000-0887.2014.10.005
Citation: WAN Yun, WANG Zhen-qing, ZHOU Li-min, ZHANG Ji-feng. Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Aluminium Laminates[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1107-1114. doi: 10.3879/j.issn.1000-0887.2014.10.005

表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响

doi: 10.3879/j.issn.1000-0887.2014.10.005
基金项目: 国家自然科学基金(11272096);高等学校博士学科点专项科研基金(20112304110015);中央高校基本科研业务费(HEUCF130216)
详细信息
    作者简介:

    万云(1985—),男,江西人, 博士生(E-mail: wanyun0505@hrbeu.edu.cn);王振清(1962—),男,黑龙江人,教授,博士,博士生导师(通讯作者.Tel: +86-451-82589364; E-mail: wangzhenqing@hrbeu.edu.cn).

  • 中图分类号: O346

Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Aluminium Laminates

Funds: The National Natural Science Foundation of China(11272096)
  • 摘要: 表面机械研磨(SMAT)技术是在短时间内通过振动发生器驱动大量硬度较大的小球以随机方向撞击金属材料,使得材料晶粒尤其是表面晶粒细化,从而达到增加材料强度的效果.通过对铝合金板进行SMAT处理,材料的极限强度和极限应变虽然有较小的降低,但是其屈服应力有较大幅度的增加.以SMAT处理后的铝合金板和玻璃纤维环氧树脂预浸料为原料,通过热压工艺制备成新型GLARE层合板.通过拉伸实验研究和理论计算分析了该GLARE材料的拉伸性能,发现SMAT处理的铝合金板制成的GLARE的屈服强度提升明显.
  • [1] Chen X H, Lu J, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J].Scripta Materialia,2005,52(10): 1039-1044.
    [2] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Simultaneously increasing the ductility and strength of nanostructured alloys[J].Advanced Materials,2006,18(17): 2280-2283.
    [3] Waltz L, Retraint D, Roos A,Olier P. Combination of surface nanocrystallization and co-rolling: creating multilayer nanocrystalline composites[J].Scripta Materialia,2009,60(1): 21-24.
    [4] Chen A Y, Li D F, Zhang J B, Song H W, Lü J. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors[J].Scripta Materialia,2008,59(6): 579-582.
    [5] Cortes P, Cantwell W J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates[J].Composites Science and Technology,2006,66(13): 2306-2316.
    [6] Petch N J. The fracture of metals[J].Progress in Metal Physics,1954, 5: 1-52.
    [7] Gleiter H. Nanocrystalline materials[J].Progress in Materials Science,1989,33: 223-315.
    [8] 陈勇, 庞宝君, 郑伟, 张志远. 纤维金属层板低速冲击实验和数值仿真[J]. 复合材料学报, 2014,31(3): 733-740. doi: 10.13801/j.cnki.fhclxb.2014.03.026.(CHEN Yong, PANG Bao-jun, ZHENG Wei, ZHANG Zhi-yuan. Experimental tests and numerical simulation on low velocity impact performance of fiber metal laminates[J].Acta Materiae Compositae Sinica,2014,31(3): 733-740. doi: 10.13801/j.cnki.fhclxb.2014.03.026.(in Chinese))
    [9] 马玉娥, 胡海威, 熊晓枫. 低速冲击下FML、铝板和复材的损伤对比研究[J]. 航空学报, 2014,35(1): 1-10.(MA Yu-e, HU Hai-wei, XIONG Xiao-feng. Comparison of damage in fibre metal laminates, aluminium and composite panel subjected to low-velocity impact[J].Acta Aeronautica et Astronautica Sinica,2014,35(1): 1-10.(in Chinese))
    [10] Seo H, Hundley J, Hahn H T, Yang J M. Numerical simulation of glass-fiber-reinforced aluminium laminates with diverse impact damage[J].AIAA Journal,2010,48(3): 676-687.
    [11] Sadighi M, Parnanen T, Alderliesten R C, Sayeaftabi M, Benedictus R. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber-metal laminates [J].Applied Composite Materials,2012,19(3): 545-559.
    [12] 陈绍杰, 朱珊, 李萍. 纤维增强铝合金层板的发展与应用[J]. 航空学报, 1991,12(12): 589-597.(CHEN Shao-jie, ZHU Shan, LI Ping. Development and application of a fiber reinforced aluminium laminates[J].Acta Aeronautica et Astronautica Sinica,1991,12(12): 589-597.(in Chinese))
    [13] Alderliesten R C, Benedictus R. Fiber/metal composite technology for future primary aircraft structures[J].Journal of Aircraft,2008,45(4): 1182-1189.
    [14] Guo X, Leung A Y T, Chen A Y, Ruan H H, Lü J. Investigation of non-local cracking in layered stainless steel with nanostructrued interface[J].Scripta Materialia,2010,63(4): 403-406.
    [15] Chen X H, Lü J, Lu L, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J].Scripta Materialia,2005,52(10):1039-1044.
    [16] Zhang H W, Hei Z K, Liu G, Lü J, Lu K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta Materialia,2003,51(7): 1871-1881.
    [17] Cho K T, Song K, Oh S H, Lee Y K. Surface hardening of aluminum alloy by shot peening treatment with Zn based ball[J].Materials Science and Engineering A,2012,543(13): 44-49.
    [18] Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8): 2075-2084.
    [19] Volt A, Gunnink J W.Fiber Metal Laminates [M]. Netherlands: Kluwer Academic Publishers, 2001: 73-75.
  • 加载中
计量
  • 文章访问数:  939
  • HTML全文浏览量:  81
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 修回日期:  2014-08-20
  • 刊出日期:  2014-10-15

目录

    /

    返回文章
    返回