[1] |
Goldstein H, Poole Jr C P, Safko J L. Classical Mechanics [M]. 3rd ed. Boston: Addison Wesley, 2002.
|
[2] |
Mclachlan R I, Scovel C. Equivariant constrained symplectic integration[J]. Journal of Nonlinear Science,1995,5(3): 233-256.
|
[3] |
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Springer, 2006.
|
[4] |
Wendlandt J M, Marsden J E. Mechanical integrators derived from a discrete variational principle[J]. Physica D: Nonlinear Phenomena,1997,106(3): 223-246.
|
[5] |
Simo J C, Wong K K. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum[J]. International Journal for Numerical Methods in Engineering,1991,31(1): 19-52.
|
[6] |
Lens E V, Cardona A, Geradin M. Energy preserving time integration for constrained multibody systems[J]. Multibody System Dynamics,2004,11(1): 41-61.
|
[7] |
Betsch P, Steinmann P. Constrained integration of rigid body dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2001,191(3): 467-488.
|
[8] |
Betsch P, Siebert R. Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration[J]. International Journal for Numerical Methods in Engineering,2009,79(4): 444-473.
|
[9] |
Nielsen M B, Krenk S. Conservative integration of rigid body motion by quaternion parameters with implicit constraints[J]. International Journal for Numerical Methods in Engineering,2012,92(8): 734-752.
|
[10] |
Krenk S, Nielsen M B. Conservative rigid body dynamics by convected base vectors with implicit constraints[J]. Computer Methods in Applied Mechanics and Engineering,2014,269: 437-453.
|
[11] |
徐小明, 钟万勰. 刚体动力学的四元数表示及保辛积分[J]. 应用数学和力学, 2014,35(1): 1-11.(XU Xiao-ming, ZHONG Wan-xie. Symplectic integration of rigid body motion by quaternion parameters[J]. Applied Mathematics and Mechanics,2014,35(1): 1-11.(in Chinese))
|
[12] |
钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHONG Wan-xie. Symplectic Method in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
|
[13] |
钟万勰, 高强, 彭海军. 经典力学——辛讲[M]. 大连: 大连理工大学出版社, 2013.(ZHONG Wan-xie, GAO Qiang, PENG Hai-jun. Classical Mechanics—Its Symplectic Description [M]. Dalian: Dalian University of Technology Press, 2013. (in Chinese))
|
[14] |
程国采. 四元数法及其应用[M]. 长沙: 国防科技大学出版社, 1991.(CHENG Guo-cai. The Method of Quaternion and Its Application [M]. Changsha: National University of Defence Technology Press, 1991.(in Chinese))
|