留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性屈曲梁非线性内共振稳态周期响应

熊柳杨 张国策 丁虎 陈立群

熊柳杨, 张国策, 丁虎, 陈立群. 黏弹性屈曲梁非线性内共振稳态周期响应[J]. 应用数学和力学, 2014, 35(11): 1188-1196. doi: 10.3879/j.issn.1000-0887.2014.11.002
引用本文: 熊柳杨, 张国策, 丁虎, 陈立群. 黏弹性屈曲梁非线性内共振稳态周期响应[J]. 应用数学和力学, 2014, 35(11): 1188-1196. doi: 10.3879/j.issn.1000-0887.2014.11.002
XIONG Liu-yang, ZHANG Guo-ce, DING Hu, CHEN Li-qun. Steady-State Periodic Responses of a Viscoelastic Buckled Beam in Nonlinear Internal Resonance[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1188-1196. doi: 10.3879/j.issn.1000-0887.2014.11.002
Citation: XIONG Liu-yang, ZHANG Guo-ce, DING Hu, CHEN Li-qun. Steady-State Periodic Responses of a Viscoelastic Buckled Beam in Nonlinear Internal Resonance[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1188-1196. doi: 10.3879/j.issn.1000-0887.2014.11.002

黏弹性屈曲梁非线性内共振稳态周期响应

doi: 10.3879/j.issn.1000-0887.2014.11.002
基金项目: 国家自然科学基金(重点项目)(11232009);国家自然科学基金(11372171;11422214);上海市教委科研创新项目(12YZ028)
详细信息
    作者简介:

    熊柳杨(1991—), 男, 江西宜春人, 硕士生(E-mail: xly0831@126.com);丁虎(1978—), 男,安徽明光人,研究员,博士(通讯作者. E-mail: dinghu3@shu.edu.cn).

  • 中图分类号: O322;O345

Steady-State Periodic Responses of a Viscoelastic Buckled Beam in Nonlinear Internal Resonance

Funds: The National Natural Science Foundation of China(Key Program)(11232009); The National Natural Science Foundation of China(11372171;11422214)
  • 摘要: 研究了内共振下简支边界屈曲黏弹性梁受迫振动稳态周期幅频响应.考虑Kelvin黏弹性本构关系,并通过对非平凡平衡位形做坐标变换,建立屈曲梁横向振动的非线性偏微分-积分模型.基于对控制方程的Galerkin截断,得到多维非线性常微分方程组.在前两阶模态内共振存在的条件下,运用多尺度法分析截断后的控制方程,利用可解性条件消除长期项,获得一阶主共振下的幅值与相角方程.通过数值算例以展示系统稳态幅频响应关系以及失稳区域,从而聚焦系统共振中存在的非线性现象,如跳跃现象、滞后现象,并讨论了双跳跃现象随轴向荷载的演化.通过直接数值方法处理截断方程,数值验证近似解析解,计算结果表明多尺度法具有较高精度.
  • [1] 叶敏, 陈予恕. 弹性屈曲梁在参数激励下的倍周期分叉[J]. 固体力学学报, 1998,19(4): 361-364.(YE Min, CHEN Yu-shu. Period doubling bifurcation in elastic buckled beam under parametric excitation[J]. Acta Mechnica Solida Sinica,1998,19(4): 361-364.(in Chinese))
    [2] 朱媛媛, 胡育佳, 程昌钧. Euler型梁-柱结构的非线性稳定性和后屈曲分析[J]. 应用数学和力学, 2011,32(6): 674-682.(ZHU Yuan-yuan, HU Yu-jia, CHENG Chang-jun. Analysis of nonlinear stability and post buckling for the Euler-type beam-column structure[J]. Applied Mathematics and Mechanics,2011,32(6): 674-682.(in Chinese))
    [3] 王昊, 陈立群. 强横向激励作用下屈曲梁的稳态幅频响应特性[J]. 应用数学和力学, 2014,35(2): 181-187.(WANG Hao, CHEN Li-qun. Steady-state amplitude-frequency characteristics of axially buckled beams under strong transverse excitation[J]. Applied Mathematics and Mechanics,2014,35(2): 181-187.(in Chinese))
    [4] Lacarbonara W, Nayfeh A H, Kreider W. Experimental validation of reduction methods for nonlinear vibrations of distributed-parameter systems: analysis of a buckled beam[J]. Nonlinear Dynamics,1998,17(2): 95-117.
    [5] Emam S A, Nayfeh A H. On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation[J]. Nonlinear Dynamics,2004,35(1): 1-17.
    [6] Nayfeh A H, Balachandran B. Modal interactions in dynamical and structural systems[J]. Applied Mechanics Reviews,1989,42(11): 175-201.
    [7] Afaneh A, Ibrahim R. Nonlinear response of an initially buckled beam with 1∶1 internal resonance to sinusoidal excitation[J]. Nonlinear Dynamics,1993,4(6): 547-571.
    [8] Chin C M, Nayfeh A H, Lacarbonara W. Two-to-one internal resonances in parametrically excited buckled beams[C]// Proceedings of the AIAA Structures, Structural Dynamics and Materials Conference,1997: 213-223.
    [9] 陈宁. 屈曲非线性黏弹性梁的动力学行为研究[J]. 力学学报, 2002,34(增刊): 229-233.(CHEN Ning. Dynamical behaviors of nonlinear viscoelastic buckled beams[J]. Acta Mechanica Sinica,2002,34(S): 229-233.(in Chinese))
    [10] Xiong L Y, Zhang G C, Ding H, Chen L Q. Nonlinear forced vibration of a viscoelastic buckled beam with 2∶1 internal resonance[J]. Mathematical Problems in Engineering,2014,2014. Article ID 906324.
    [11] Nayfeh A H, Emam S A. Exact solution and stability of postbuckling configurations of beams[J]. Nonlinear Dynamics,2008,54(4): 395-408.
    [12] Chen L Q, Zhang Y L, Zhang G C, Ding H. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed[J]. International Journal of Non-Linear Mechanics,2014,58: 11-21.
  • 加载中
计量
  • 文章访问数:  1285
  • HTML全文浏览量:  87
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-23
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回