留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

立方非线性微结构固体中的对称孤立波及存在条件

那仁满都拉 额尔敦仓

那仁满都拉, 额尔敦仓. 立方非线性微结构固体中的对称孤立波及存在条件[J]. 应用数学和力学, 2014, 35(11): 1210-1217. doi: 10.3879/j.issn.1000-0887.2014.11.004
引用本文: 那仁满都拉, 额尔敦仓. 立方非线性微结构固体中的对称孤立波及存在条件[J]. 应用数学和力学, 2014, 35(11): 1210-1217. doi: 10.3879/j.issn.1000-0887.2014.11.004
Naranmandula, Ereduncang. Symmetric Solitary Waves and Their Existence Conditions in Cubic Nonlinear Microstructured Solids[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1210-1217. doi: 10.3879/j.issn.1000-0887.2014.11.004
Citation: Naranmandula, Ereduncang. Symmetric Solitary Waves and Their Existence Conditions in Cubic Nonlinear Microstructured Solids[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1210-1217. doi: 10.3879/j.issn.1000-0887.2014.11.004

立方非线性微结构固体中的对称孤立波及存在条件

doi: 10.3879/j.issn.1000-0887.2014.11.004
基金项目: 国家自然科学基金(11462019; 10862003)
详细信息
    作者简介:

    那仁满都拉(1963—),男,蒙古族,内蒙古通辽人,教授,博士,硕士生导师(通讯作者. E-mail: nrmdltl@126.com).

  • 中图分类号: O331;O347

Symmetric Solitary Waves and Their Existence Conditions in Cubic Nonlinear Microstructured Solids

Funds: The National Natural Science Foundation of China(11462019; 10862003)
  • 摘要: 考虑固体材料的宏观尺度立方非线性效应、微尺度立方非线性效应以及微尺度频散效应并根据修正的Mindlin理论,建立了一维微结构固体中纵波传播的一种新模型.用动力系统的定性分析方法,证明了适当条件下立方非线性微结构固体中可存在对称钟型孤立波和反钟型孤立波,并给出了两种孤立波的存在条件.用数值方法分析了微尺度立方非线性效应对钟型与反钟型孤立波的影响,结果显示随着微尺度非线性效应的增强(或负增强),两种孤立波的宽度变窄(或变宽)而幅度保持不变.
  • [1] Mindlin R D. Micro-structure in linear elasticity[J].Archive for Rational Mechanics and Analysis, 1964,16(1): 51-78.
    [2] Engelbrecht J, Khamidullin Y. On the possible amplification of nonlinear seismic waves[J].Physics of the Earth and Planetary Interios,1988,50(1): 39-45.
    [3] Erofeev V I.Wave Processes in Solids With Microstructure [M]. Singapore: World Scientific, 2003: 101-223.
    [4] 程昌钧. 理性力学在中国的传播与发展[J]. 力学与实践, 2008,30(1): 10-17.(CHENG Chang-jun. The dissemination and development of rational mechanics in China[J].Mechanics in Engineering,2008,30(1): 10-17.(in Chinese))
    [5] 戴天民. 对带有微结构的弹性固体理论的再研究[J]. 应用数学和力学, 2002,23(8): 771-777.(DAI Tian-min. Restudy of theories for elastic solids with microstructure[J].Applied Mathematics and Mechanics,2002,23(8): 771-777.(in Chinese))
    [6] 陈少华, 王自强. 应变梯度理论进展[J]. 力学进展, 2003,33(2): 207-216.(CHEN Shao-hua, WANG Zi-qiang. Advances in strain gradient theory[J].Advances in Mechanics, 2003,33(2): 207-216.(in Chinese))
    [7] 胡更开, 刘晓宁, 荀飞. 非均匀微极介质的有效性质分析[J]. 力学进展, 2004,34(2): 195- 214.(HU Geng-kai, LIU Xiao-ning, XUN Fei. Micromechanics of heterogeneous micropolar mediums[J].Advances in Mechanics,2004,34(2): 195-214.(in Chinese))
    [8] Engelbrecht J, Pastrone F. Wave in microstructured solids with nonlinearities in microscale[J].Proceedings of the Estonian Academy of Sciences, Physics, Mathematics,2003,52(1): 12-20.
    [9] Porubov A V, Pastrone F. Nonlinear bell-shaped and kink-shaped strain waves in microstructured solids[J].International Journal of Non-Linear Mechanics,2004,39(8): 1289-1299.
    [10] Porubov A V, Aero E L, Maugin G A. Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials[J].Physical Review E, 2009,79: 046608-046620.
    [11] Janno J, Engelbrecht J. An inverse solitary wave problem related to microstructured materials[J].Inverse Problems,2005,21(6): 2019-2034.
    [12] Janno J, Engelbrecht J. Solitary waves in nonlinear microstructured materials[J].Journal of Physics A: Mathematical and General,2005,38(23): 5159-5172.
    [13] Salupere A, Tamm K. On the influence of material properties on the wave propagation in Mindlin-type microstructured solids[J].Wave Motion,2013,50(7): 1127-1139.
  • 加载中
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  123
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-22
  • 修回日期:  2014-06-22
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回