留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RBF神经网络模型的结构可靠度优化方法

李刚 孟增

李刚, 孟增. 基于RBF神经网络模型的结构可靠度优化方法[J]. 应用数学和力学, 2014, 35(11): 1271-1279. doi: 10.3879/j.issn.1000-0887.2014.11.010
引用本文: 李刚, 孟增. 基于RBF神经网络模型的结构可靠度优化方法[J]. 应用数学和力学, 2014, 35(11): 1271-1279. doi: 10.3879/j.issn.1000-0887.2014.11.010
LI Gang, MENG Zeng. Reliability-Based Design Optimization With the RBF Neural Network Model[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1271-1279. doi: 10.3879/j.issn.1000-0887.2014.11.010
Citation: LI Gang, MENG Zeng. Reliability-Based Design Optimization With the RBF Neural Network Model[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1271-1279. doi: 10.3879/j.issn.1000-0887.2014.11.010

基于RBF神经网络模型的结构可靠度优化方法

doi: 10.3879/j.issn.1000-0887.2014.11.010
基金项目: 国家自然科学基金(11372061; 91315301)
详细信息
    作者简介:

    李刚(1966—),男,太原人,教授,博士,博士生导师(通讯作者. E-mail: ligang@dlut.edu.cn);孟增(1987—),男,甘肃陇南人,博士生(E-mail: mengz@mail.dlut.edu.cn).

  • 中图分类号: TB114.3;O213.2

Reliability-Based Design Optimization With the RBF Neural Network Model

Funds: The National Natural Science Foundation of China(11372061; 91315301)
  • 摘要: 在结构构件尺寸、材料属性以及外部载荷等不确定性因素影响下,基于可靠度的优化给出了兼顾结构的成本和安全性能的安全设计方案.由于传统的可靠度优化方法采用嵌套的双层优化列式求解,因此导致计算量过大.为了克服这个问题,学者们相继提出了解耦方法和单循环方法等方法.该文采用RBF神经网络模型用于可靠度优化问题的求解中,通过拉丁超立方方法构造代理模型,并用误差指标来验证代理模型的精确程度,同时自适应更新代理模型直至满足需求.通过与现有可靠度优化4种主流算法的比较,说明了该文提出算法的高效性和稳健性.
  • [1] Nikolaidis E, Burdisso R. Reliability-based optimization: a safety index approach[J].Computers & Structures,1988,28(6): 781-788.
    [2] Tu J, Choi K K, Park Y H. A new study on reliability-based design optimization[J]. Journal of Mechanical Design,1999,121(4): 557-564.
    [3] Liang J, Mourelatos Z P, Tu J. A single-loop method for reliability-based design optimisation[J]. International Journal of Product Development,2008,5(1): 76-92.
    [4] Madsen H O, Hansen P F. A comparison of some algorithms for reliability based structural optimization and sensitivity analysis[C]// Proceedings of the 4th IFIPWG 75 Conference.Munich, Germany, 1991.
    [5] CHEN Xiao-guang, Hasselman T K, Neill D J. Reliability based structural design optimization for practical applications[C]// Proceedings of the 38th AIAA/ASME/ASCE /AHS/ASC Structures, Structural Dynamics, and Materials Conference.Kissimmee, FL, 1997.
    [6] 程耿东, 许林. 基于可靠度的结构优化的序列近似规划算法[J]. 计算力学学报, 2006,23(6): 641-646.(CHENG Geng-dong, XU Lin. Sequential approximate programming approach to reliability based structural optimization[J]. Chinese Journal of Computational Mechanics,2006,23(6): 641-646. (in Chinese))
    [7] Yi P, Cheng G, Jiang L. A sequential approximate programming strategy for performance-measure-based probabilistic structural design optimization[J]. Structural Safety,2008,30(2): 91-109.
    [8] Du X, Chen W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design,2004,126(2): 225-233.
    [9] 许林, 程耿东, 易平. 利用系统可靠度约束下的优化设计求解公差分配问题[J]. 机械强度, 2007,28(6): 839-844.(XU Lin, CHENG Geng-dong, YI Ping. Tolerance assignment using algorithm for system reliability based optimal design[J]. Journal of Mechanical Strength,2007,28(6): 839-844.(in Chinese))
    [10] Youn B D, Choi K K, Yang R J, Gu L. Reliability-based design optimization for crashworthiness of vehicle side impact[J]. Structural and Multidisciplinary Optimization,2004,26(3/4): 272-283.
    [11] Xu K, Xie M, Tang L C, Ho S T. Application of neural networks in forecasting engine systems reliability[J]. Applied Soft Computing,2003,2(4): 255-268.
    [12] Wu Y T, Millwater H R, Cruse T A. Advanced probabilistic structural analysis method for implicit performance functions[J]. AIAA Journal,1990,28(9): 1663-1669.
    [13] Youn B D, Choi K K, Park Y H. Hybrid analysis method for reliability-based design optimization[J]. Journal of Mechanical Design,2003,125(2): 221-232.
    [14] Li G, Meng Z. A modified chaos control approach of the performance measure functions for reliability-based design optimization[C]//10th World Congress on Structural and Multidisciplinary Optimization.Orlando, Florida, USA, 2013.
    [15] Venter G, Haftka R T, Chirehdast M. Response surface approximations for fatigue life prediction[C]//Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and AIAA/ASM/AHS Adaptive Structures Forum.Kissimmee, FL, 1997.
  • 加载中
计量
  • 文章访问数:  1225
  • HTML全文浏览量:  133
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-15
  • 刊出日期:  2014-11-18

目录

    /

    返回文章
    返回