[1] |
周建平. 空间交会对接技术[M]. 北京: 国防工业出版社, 2013: 1-19.(ZHOU Jian-ping. Space Rendezvous and Docking Technology[M]. Beijing: National Defence Industry Press, 2013: 1-19.(in Chinese))
|
[2] |
Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous[J]. Journal of Aerospace Science,1960,27(9): 653-658.
|
[3] |
林来兴. 空间交会动力学和安全模式[J]. 宇航学报, 1993,14(1): 1-6.(LIN Lai-xing. Dynamics and safe mode of space rendezvous[J]. Journal of Astronautics,1993,14(1): 1-6.(in Chinese))
|
[4] |
周建平. 天宫一号/神舟八号交会对接任务总体评述[J]. 载人航天, 2012,18(1): 1-5.(ZHOU Jian-ping. A review of Tiangong-1/Shenzhou-8 rendezvous and docking mission[J]. Manned Spaceflight,2012,18(1): 1-5.(in Chinese))
|
[5] |
杏建军. 编队卫星周期性相对运动轨道设计与构形保持研究[D]. 博士学位论文. 长沙: 国防科学技术大学, 2007.(XING Jian-jun. Study on formation design and stationkeeping of spacecraft formation flying[D]. PhD Thesis. Changsha: National University of Defense Technology, 2007.(in Chinese))
|
[6] |
林来兴. 交会对接动力学模型和动力学特性[J]. 中国空间科学技术, 1994,14(3): 47-53.(LIN Lai-xing. Dynamic model and behaviour of space rendezvous[J]. Chinese Space Science and Technology,1994,14(3): 47-53.(in Chinese))
|
[7] |
应祖光. 高等动力学——理论及应用[M]. 杭州: 浙江大学出版社, 2011: 36-65.(YING Zhu-guang. Advanced Dynamics—Theory and Application[M]. Hangzhou: Zhejiang University Press, 2011: 36-65.(in Chinese))
|
[8] |
冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科技出版社, 2003: 185-205.(FENG Kang, QIN Meng-zhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou: Zhejiang Science and Technology Press, 2003: 185-205.(in Chinese))
|
[9] |
赵衍辉, 刘宏伟. 经典哈密顿力学的辛算法[J]. 白城师范学院学报, 2009,23(6): 14-16.(ZHAO Yan-hui, LIU Hong-wei. The symplectic method of the classical Hamilton mechanics[J]. Journal of Baicheng Normal College,2009,23(6): 14-16.(in Chinese))
|
[10] |
李贵华,不动泛系定理及其进展,大自然探素(待发表).
|
[11] |
FENG Kang. On difference schemes and symplectic geometry[C]// Proceeding of the 5th Intern Symposium on Differential Geometry and Differential Equations . Beijing: Science Press, 1985: 42-58.
|
[12] |
Sanz-Serna J M. Runge-Kutta schemes for Hamiltonian systems[J]. BIT Numerical Mathematics,1988,28(4): 877-883.
|
[13] |
Lasagni F M. Canonical Runge-Kutta methods[J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP),1988,39(6): 952-953.
|
[14] |
Suris Y B. On the canonicity of mappings that can be generated by methods of Runge-Kutta type for integrating systems x=- U/ x[J].Zh Vychisl Mat i Mat Fiz,1989,29(2): 202-211.
|
[15] |
刘林, 廖新浩, 赵长印, 王昌彬. 辛算法在动力天文中的应用[J]. 天文学报, 1994,35(1): 51-66.(LIU Lin, LIAO Xin-hao, ZHAO Zhang-yin, WANG Chang-bin. Application of symplectic integrators to dynamical astronomy [J]. Acta Astronomica Sinica,1994,35(1): 51-66.(in Chinese))
|
[16] |
刘林, 廖新浩, 季江徽. 辛算法在近地小行星轨道演化数值研究中的应用[J]. 计算物理, 1997,14(4): 649-651.(LIU Lin, LIAO Xin-hao, JI Jiang-hui. The application of symplectic algorithm on numerical research of the orbital evolution of the NEAS[J]. Chinese Journal of Computational Physics,1997,14(4): 649-651.(in Chinese))
|
[17] |
蒋长锦. 四级四阶对角隐式辛Runge-Kutta方法参数计算[J]. 数值计算与计算机应用, 2002,23(3): 161-166.(JIANG Chang-jin. On compute of parameters for 4-stage 4-order diagonally implicit symplectic Runge-Kutta methods[J].Journal of Numerical Methods and Computer Applications,2002,23(3): 161-166.(in Chinese))
|
[18] |
Tang Y F. The symplecticity of multi-step methods[J]. Computers & Mathematics With Applications,1993,25(3): 83-90.
|