留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机激励下一类含分数阶阻尼的轮胎的振动响应

范院琴 徐伟 韩群 杨勇歌

范院琴, 徐伟, 韩群, 杨勇歌. 随机激励下一类含分数阶阻尼的轮胎的振动响应[J]. 应用数学和力学, 2014, 35(12): 1330-1340. doi: 10.3879/j.issn.1000-0887.2014.12.005
引用本文: 范院琴, 徐伟, 韩群, 杨勇歌. 随机激励下一类含分数阶阻尼的轮胎的振动响应[J]. 应用数学和力学, 2014, 35(12): 1330-1340. doi: 10.3879/j.issn.1000-0887.2014.12.005
FAN Yuan-qin, XU Wei, HAN Qun, YANG Yong-ge. Vibration Responses of Rubber Tires With Fractional Damping Under Stochastic Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1330-1340. doi: 10.3879/j.issn.1000-0887.2014.12.005
Citation: FAN Yuan-qin, XU Wei, HAN Qun, YANG Yong-ge. Vibration Responses of Rubber Tires With Fractional Damping Under Stochastic Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1330-1340. doi: 10.3879/j.issn.1000-0887.2014.12.005

随机激励下一类含分数阶阻尼的轮胎的振动响应

doi: 10.3879/j.issn.1000-0887.2014.12.005
基金项目: 国家自然科学基金(11172233;11302169)
详细信息
    作者简介:

    范院琴(1990—),女,江西人,硕士生(E-mail: fanyuanqin2012@126.com);徐伟(1957—),男,浙江人,教授,博士生导师(通讯作者. E-mail: weixu@nwpu.edu.cn).

  • 中图分类号: O246

Vibration Responses of Rubber Tires With Fractional Damping Under Stochastic Excitation

Funds: The National Natural Science Foundation of China(11172233;11302169)
  • 摘要: 基于随机平均法研究了Kanai-Tajimi噪声激励下含分数阶阻尼的轮胎动力学系统的响应.首先将地震波近似为Kanai-Tajimi噪声,结合点接触模型和分数阶导数模型,建立轮胎的动力学方程,然后运用随机平均法求解振动位移的稳态概率密度函数的解析解,最后通过Monte-Carlo数值模拟验证了该方法的有效性.利用振动位移的概率密度求解聚丁二烯橡胶、丁基B252橡胶轮胎振动位移的均值与方差,并以此为依据考察这两类橡胶的减振性能.研究结果表明,轮胎振动位移的均值和方差随橡胶的储能模量的增大而增大,随耗散模量的增大而减小,这说明减小橡胶的储能模量或增大耗散模量可有效改善轮胎的减振性能.所得结果可为轮胎的设计与制造提供一定的理论基础.
  • [1] 陈清军, 袁伟泽, 曹丽雅. 长周期地震波作用下高层建筑结构的弹塑性动力响应分析[J]. 力学季刊, 2011,32(3): 404-410.(CHEN Qing-jun, YUAN Wei-ze, CAO Li-ya. Elasto-plastic dynamic response analysis of high rise structures under long period ground motion[J]. Chinese Quarterly of Mechanics,2011,32(3): 404-410.(in Chinese))
    [2] Roghaei M, Zabihollah A. An efficient and reliable structural health monitoring system for buildings after earthquake[J]. APCBEE Procedia,2014,9: 309-316.
    [3] 张丙强. 竖向环境震动对人车路系统耦合震动的影响[J]. 动力学与控制学报, 2012,10(2): 186-191.(ZHANG Bing-qiang. Influence of vertical ambient vibration on the body-vehicle-road coupled vibrating system[J]. Journal of Dynamics and Control, 2012,10(2): 186-191.(in Chinese))
    [4] 张丙强. 地震作用对车辆-道路系统耦合震动的影响[J]. 河南理工大学学报, 2012,31(6): 728-733.(ZHANG Bing-qiang. Influence of sesmic on the coupled vibration of vehicle-road system[J]. Journal of Henan Polytechnic University,2012,31(6): 728-733.(in Chinese))
    [5] 周光泉, 刘孝敏. 粘弹性理论[M]. 合肥: 中国科学技术大学出版社, 1996.(ZHOU Guang-quan, LIU Xiao-min. Viscoelastic Theory [M]. Hefei: University of Science and Technology of China Press, 1996.(in Chinese))
    [6] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3): 201-210.
    [7] Bagley R L, Torvik P J. Fractional calculus a different approach to the analysis of viscoelastically damped structures[J]. AIAA Journal,1983,21(5): 741-748.
    [8] Song D Y, Jiang T Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application[J]. Rheologica Acta, 1998,37(5): 512-517.
    [9] 李根国, 朱正佑, 程昌钧. 具有分数导数型本构关系的粘弹性柱的动力稳定性[J]. 应用数学和力学, 2001,22(3): 250-258.(LI Gen-guo, ZHU Zheng-you, CHENG Chang-jun. Dynamical stability of viscoelastic column with fractional derivative constitutive relation[J]. Applied Mathematics and Mechanics,2001,22(3): 250-258.(in Chinese))
    [10] 吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008,25(1): 161-166.(WU Jie, SHANGGUAN Wen-bin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional[J]. Engineering Mechanics,2008,25(1): 161-166.(in Chinese))
    [11] 周超, 吴庆呜, 张强. 粘弹性阻尼隔振体的非线性振动分析[J]. 工程设计学报, 2009,16(3): 205-208.(ZHOU Chao, WU Qing-wu, ZHANG Qiang. Nonlinear vibration analysis of viscoelastic isolator[J]. Chinese Journal of Engineering Design,2009,16(3): 205-208.(in Chinese))
    [12] Adhikari S. Damping models for structural vibration[D]. PhD Thesis. Cambridge: University of Cambridge, 2000: 75-78.
    [13] Agrawal O P. Analytical solution for stochastic response of a fractionally damped beam[J]. Journal of Vibration and Acoustics,2004,126(4): 561-566.
    [14] Agrawal O P. Stochastic analysis of a 1-D system with fractional damping of order 1/2[J]. Journal of Vibration and Acoustics,2002,124(3): 454-460.
    [15] Agrawal O P. Stochastic analysis of dynamic systems containing fractional derivatives[J]. Journal of Sound and Vibration,2001,247(5): 927-938.
    [16] Ye K, Li L, Tang J. Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative[J]. Earthquake Engineering and Engineering Vibration,2003,2(1): 133-139.
    [17] Huang Z L, Jin X L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J]. Journal of Sound and Vibration,2009,319(3/5): 1121-1135.
    [18] Liu D, Xu W, Xu Y.Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation[J]. Journal of Sound and Vibration,2012,331(17): 4045-4056.
    [19] Chen L C, Wang W H, Li Z S, Zhu W Q. Stationary response of Duffing oscillator with hardening stiffness and fracional derivative[J]. International Journal of Non-Linear Mechanics,2013,48: 44-50.
    [20] 陈林聪, 朱位秋. 谐和与宽带噪声联合激励下含分数导数型阻尼的Duffing振子的平稳响应[J]. 应用力学学报, 2010,3(27): 517-521.(CHEN Lin-cong, ZHU Wei-qiu. Stationary response of Duffing oscillator with fractional derivative damping under combined harmonic and wide band noise excitations[J]. Chinese Journal of Applied Mechanics,2010,3(27): 517-521.(in Chinese))
    [21] 张菊辉. 有关Kanai-Tajimi模型的统计特征分析[J]. 世界地震工程, 2007,23(1): 156-160.(ZHANG Ju-hui. Statistical properties analysis of Kainai-Tajimi model[J]. Word Earthquake Engineering,2007,23(1): 156-160.(in Chinese))
    [22] 宦荣华, 潘国峰, 金伟良, 朱位秋. 计及列车车体随机振动影响时受电弓的随机动力响应[J]. 铁道学报, 2010,32(3): 39-42.(HUAN Rong-hua, PAN Guo-feng, JIN Wei-liang, ZHU Wei-qiu. Stochastic response of pantograph under action of car body random vibration[J]. Journal of the China Railway Society,2010,32(3): 39-42.(in Chinese))
    [23] 朱位秋. 非线性随机动力学与控制: Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.(ZHU Wei-qiu. Nonlinear Stochastic Dynamics and Control-Hamilton Theoretical System Framework [M]. Beijing: Science Press, 2003.(in Chinese))
    [24] 王吉忠, 庄继德. 轮胎胎面单元表观刚度计算[J]. 农业工程学报, 2000,16(2): 28-31.(WANG Ji-zhong, ZHUANG Ji-de. Calculation of the apparent stiffness of tyre tread[J]. Transaction of the Chinese Society of Agricultural Engineering,2000,16(2): 28-31.(in Chinese))
    [25] 梁超锋, 欧进萍. 结构阻尼与材料阻尼的关系[J]. 地震工程与工程振动, 2006,26(1): 49-55.(LIANG Chao-feng, OU Jin-pin. Relationship between structural damping and material damping[J]. Earthquake Engineering and Engineering Dynamics,2006,26(1): 49-55.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1128
  • HTML全文浏览量:  113
  • PDF下载量:  985
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-13
  • 修回日期:  2014-11-04
  • 刊出日期:  2014-12-15

目录

    /

    返回文章
    返回