[1] |
陈清军, 袁伟泽, 曹丽雅. 长周期地震波作用下高层建筑结构的弹塑性动力响应分析[J]. 力学季刊, 2011,32(3): 404-410.(CHEN Qing-jun, YUAN Wei-ze, CAO Li-ya. Elasto-plastic dynamic response analysis of high rise structures under long period ground motion[J]. Chinese Quarterly of Mechanics,2011,32(3): 404-410.(in Chinese))
|
[2] |
Roghaei M, Zabihollah A. An efficient and reliable structural health monitoring system for buildings after earthquake[J]. APCBEE Procedia,2014,9: 309-316.
|
[3] |
张丙强. 竖向环境震动对人车路系统耦合震动的影响[J]. 动力学与控制学报, 2012,10(2): 186-191.(ZHANG Bing-qiang. Influence of vertical ambient vibration on the body-vehicle-road coupled vibrating system[J]. Journal of Dynamics and Control, 2012,10(2): 186-191.(in Chinese))
|
[4] |
张丙强. 地震作用对车辆-道路系统耦合震动的影响[J]. 河南理工大学学报, 2012,31(6): 728-733.(ZHANG Bing-qiang. Influence of sesmic on the coupled vibration of vehicle-road system[J]. Journal of Henan Polytechnic University,2012,31(6): 728-733.(in Chinese))
|
[5] |
周光泉, 刘孝敏. 粘弹性理论[M]. 合肥: 中国科学技术大学出版社, 1996.(ZHOU Guang-quan, LIU Xiao-min. Viscoelastic Theory [M]. Hefei: University of Science and Technology of China Press, 1996.(in Chinese))
|
[6] |
Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3): 201-210.
|
[7] |
Bagley R L, Torvik P J. Fractional calculus a different approach to the analysis of viscoelastically damped structures[J]. AIAA Journal,1983,21(5): 741-748.
|
[8] |
Song D Y, Jiang T Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application[J]. Rheologica Acta, 1998,37(5): 512-517.
|
[9] |
李根国, 朱正佑, 程昌钧. 具有分数导数型本构关系的粘弹性柱的动力稳定性[J]. 应用数学和力学, 2001,22(3): 250-258.(LI Gen-guo, ZHU Zheng-you, CHENG Chang-jun. Dynamical stability of viscoelastic column with fractional derivative constitutive relation[J]. Applied Mathematics and Mechanics,2001,22(3): 250-258.(in Chinese))
|
[10] |
吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008,25(1): 161-166.(WU Jie, SHANGGUAN Wen-bin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional[J]. Engineering Mechanics,2008,25(1): 161-166.(in Chinese))
|
[11] |
周超, 吴庆呜, 张强. 粘弹性阻尼隔振体的非线性振动分析[J]. 工程设计学报, 2009,16(3): 205-208.(ZHOU Chao, WU Qing-wu, ZHANG Qiang. Nonlinear vibration analysis of viscoelastic isolator[J]. Chinese Journal of Engineering Design,2009,16(3): 205-208.(in Chinese))
|
[12] |
Adhikari S. Damping models for structural vibration[D]. PhD Thesis. Cambridge: University of Cambridge, 2000: 75-78.
|
[13] |
Agrawal O P. Analytical solution for stochastic response of a fractionally damped beam[J]. Journal of Vibration and Acoustics,2004,126(4): 561-566.
|
[14] |
Agrawal O P. Stochastic analysis of a 1-D system with fractional damping of order 1/2[J]. Journal of Vibration and Acoustics,2002,124(3): 454-460.
|
[15] |
Agrawal O P. Stochastic analysis of dynamic systems containing fractional derivatives[J]. Journal of Sound and Vibration,2001,247(5): 927-938.
|
[16] |
Ye K, Li L, Tang J. Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative[J]. Earthquake Engineering and Engineering Vibration,2003,2(1): 133-139.
|
[17] |
Huang Z L, Jin X L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J]. Journal of Sound and Vibration,2009,319(3/5): 1121-1135.
|
[18] |
Liu D, Xu W, Xu Y.Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation[J]. Journal of Sound and Vibration,2012,331(17): 4045-4056.
|
[19] |
Chen L C, Wang W H, Li Z S, Zhu W Q. Stationary response of Duffing oscillator with hardening stiffness and fracional derivative[J]. International Journal of Non-Linear Mechanics,2013,48: 44-50.
|
[20] |
陈林聪, 朱位秋. 谐和与宽带噪声联合激励下含分数导数型阻尼的Duffing振子的平稳响应[J]. 应用力学学报, 2010,3(27): 517-521.(CHEN Lin-cong, ZHU Wei-qiu. Stationary response of Duffing oscillator with fractional derivative damping under combined harmonic and wide band noise excitations[J]. Chinese Journal of Applied Mechanics,2010,3(27): 517-521.(in Chinese))
|
[21] |
张菊辉. 有关Kanai-Tajimi模型的统计特征分析[J]. 世界地震工程, 2007,23(1): 156-160.(ZHANG Ju-hui. Statistical properties analysis of Kainai-Tajimi model[J]. Word Earthquake Engineering,2007,23(1): 156-160.(in Chinese))
|
[22] |
宦荣华, 潘国峰, 金伟良, 朱位秋. 计及列车车体随机振动影响时受电弓的随机动力响应[J]. 铁道学报, 2010,32(3): 39-42.(HUAN Rong-hua, PAN Guo-feng, JIN Wei-liang, ZHU Wei-qiu. Stochastic response of pantograph under action of car body random vibration[J]. Journal of the China Railway Society,2010,32(3): 39-42.(in Chinese))
|
[23] |
朱位秋. 非线性随机动力学与控制: Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.(ZHU Wei-qiu. Nonlinear Stochastic Dynamics and Control-Hamilton Theoretical System Framework [M]. Beijing: Science Press, 2003.(in Chinese))
|
[24] |
王吉忠, 庄继德. 轮胎胎面单元表观刚度计算[J]. 农业工程学报, 2000,16(2): 28-31.(WANG Ji-zhong, ZHUANG Ji-de. Calculation of the apparent stiffness of tyre tread[J]. Transaction of the Chinese Society of Agricultural Engineering,2000,16(2): 28-31.(in Chinese))
|
[25] |
梁超锋, 欧进萍. 结构阻尼与材料阻尼的关系[J]. 地震工程与工程振动, 2006,26(1): 49-55.(LIANG Chao-feng, OU Jin-pin. Relationship between structural damping and material damping[J]. Earthquake Engineering and Engineering Dynamics,2006,26(1): 49-55.(in Chinese))
|