留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波测速仪的计算流体力学数值模拟研究

关晖 孙学金 熊英 卫克晶 杨启东

关晖, 孙学金, 熊英, 卫克晶, 杨启东. 超声波测速仪的计算流体力学数值模拟研究[J]. 应用数学和力学, 2014, 35(12): 1363-1372. doi: 10.3879/j.issn.1000-0887.2014.12.008
引用本文: 关晖, 孙学金, 熊英, 卫克晶, 杨启东. 超声波测速仪的计算流体力学数值模拟研究[J]. 应用数学和力学, 2014, 35(12): 1363-1372. doi: 10.3879/j.issn.1000-0887.2014.12.008
GUAN Hui, SUN Xue-jin, XIONG Ying, WEI Ke-jing, YANG Qi-dong. Computational Fluid Dynamics Numerical Simulation of an Ultrasonic Velocimeter[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1363-1372. doi: 10.3879/j.issn.1000-0887.2014.12.008
Citation: GUAN Hui, SUN Xue-jin, XIONG Ying, WEI Ke-jing, YANG Qi-dong. Computational Fluid Dynamics Numerical Simulation of an Ultrasonic Velocimeter[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1363-1372. doi: 10.3879/j.issn.1000-0887.2014.12.008

超声波测速仪的计算流体力学数值模拟研究

doi: 10.3879/j.issn.1000-0887.2014.12.008
详细信息
    作者简介:

    关晖(1970—),女,满族,河南开封人,副教授,博士后(通讯作者. E-mail: guanhui70@163.com).

  • 中图分类号: O35;TH824

Computational Fluid Dynamics Numerical Simulation of an Ultrasonic Velocimeter

  • 摘要: 超声波测速仪是一种利用超声波发射接收装置,通过发射接收时间来计算来流速度的一种仪器装置.目前国内许多研究都关注在如何消除测速仪的测量误差上,对于模型结构对测量风场的影响研究较少.为了考察测速仪的测量精度,本研究以模型结构对测量区域风速的影响作为关注的重点,采用计算流体力学方法模拟了从低速到高速的不同来流风速下的绕流流场,计算出位于测速仪中心区域的速度分布和不同截面上的平均速度,以判断测速仪模型结构对中心测量区域风速的影响程度.该研究结果表明在测速探头平面内测量到的速度值,无论在低速和高速时均最为准确.采用计算流体力学数值模拟方法可为今后的测速仪模型设计和改造提供准确的依据.
  • [1] 彭艳, 张宏升, 许飞, 王凯, 康凌, 张霭琛. 风杯风速计测风误差的分析研究与订正方法[J]. 气象水文海洋仪器, 2003,20(2): 5-15.(PENG Yan, ZHANG Hong-sheng, XU Fei, WANG Kai, KANG Ling, ZHANG Ai-chen. The wind cup anemometer wind error analysis and correction method[J]. Meteorological Hydrological and Marine Instrument,2003,20(2): 5-15.(in Chinese))
    [2] 黄健, 杨金波, 夏光滨. 手持式超声波风向风速仪动态比对试验方法研究[J]. 科技信息, 2012(15): 69-70.(HUANG Jian, YANG Jin-bo, XIA Guang-bing. Handheld ultrasonic anemometer wind dynamic comparative test method research[J]. Science & Technology Information,2012(15): 69-70.(in Chinese))
    [3] 曹可劲, 崔国恒, 朱银兵. 超声波风速仪理论建模与分析[J]. 声学与电子工程, 2010(1): 39-42.(CAO Ke-jin, CUI Guo-Heng, ZHU Yin-bing. Ultrasonic anemometer theory modeling and analysis[J]. Acoustics and Electronics Engineering,2010(1): 39-42.(in Chinese))
    [4] 黄颖辉. 基于DSP的超声风速测量[J]. 信息技术, 2008(11): 107-110.(HUANG Ying-hui. Ultrasonic velocity measurement based on DSP[J]. Information Technology,2008(11): 107-110.(in Chinese))
    [5] 丁向辉, 李平. 基于FPGA和DSP的超声波风向风速测量系统[J]. 应用声学, 2011(1): 48-54. (DING Xiang-hui, LI Ping. The ultrasonic wind speed measurement system based on FPGA and DSP[J]. Applied Acoustics,2011(1): 48-54.(in Chinese))
    [6] 李增志, 黄峰, 朱福萌, 王金刚. 超声风速温度仪的误差分析与检定方法研究[J]. 气象研究与应用, 2009(1) : 60-64.(LI Zeng-zhi, HUANG Feng, ZHU Fu-meng,WANG Jin-gang. Ultrasonic wind temperature instrument error analysis and detection methods of research[J]. Journal of Meteorological Research and Application,2009(1): 60-64.(in Chinese))
    [7] Jasak H. OpenFOAM: open source CFD in research and industry [J]. International Journal of Naval Architecture and Ocean Engineering,2009,1(2): 89-94.
    [8] OpenFOAM UserGuide[K]. version 2.2, 2013.
    [9] 查晶晶. 基于OpenFOAM的数值造波与消波模型及其应用[D]. 硕士学位论文. 上海: 上海交通大学, 2011.(ZHA Jing-jing. Based on OpenFOAM numerical wavemaker and wavebreaker model and applications[D]. Master Thesis. Shanghai: Shanghai Jiao Tong university, 2011.(in Chinese))
    [10] 郑巢生. 基于OpenFOAM的空泡流数值模拟方法研究[D]. 硕士学位论文. 北京: 中国舰船研究院, 2012.(ZHENG Chao-sheng. Based on OpenFOAM cavity flow numerical simulation research[D]. Master Thesis. Beijing: China Academy of Ships, 2012.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  50
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2014-10-05
  • 刊出日期:  2014-12-15

目录

    /

    返回文章
    返回