[1] |
de Jager E M, JIANG Fu-ru. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[2] |
〖JP2〗Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problems[M]. Basel: Birkhauserm Verlag AG, 2007.
|
[3] |
Chang K W, Howes F A. Nonlinear Singular Perturbation Phenomena: Theory and Applications[M]. Applied Mathemaical Science,56. New York: Springer-Verlag, 1984.
|
[4] |
Pao C V. Nonlinear Parabolic Elliptic Equations [M]. New York: Plenum Press, 1992.
|
[5] |
Martinez S, Wolanski N. A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman[J]. SIAM Journal on Mathematical Analysis,2009,41(1): 318-359.
|
[6] |
Kellogg R B, Kopteva N. A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. Journal of Differential Equations,2010,248(1): 184-208.
|
[7] |
TIAN Can-rong, ZHU Peng. Existence and asymptotic behavior of solutions for quasilinear parabolic systems[J]. Acta Applicandae Mathematicae,2012,121(1): 157-173.
|
[8] |
Skrynnikov Y. Solving initial value problem by matching asymptotic expansions[J]. SIAM Journal on Applied Mathematics,2012,72(1): 405-416.
|
[9] |
Samusenko P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations[J]. Journal of Mathematical Sciences,2013,189(5): 834-847.
|
[10] |
汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解[J]. 物理学报, 2014,63(11): 110204.(WANG Wei-gang, LIN Wan-tao, SHI Lan-fang, MO Jia-qi. Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system[J]. Acta Physica Sinica,2014,63(11): 110204.(in Chinese))
|
[11] |
WANG Wei-gang, SHI Lan-fang, XU Yong-hong, MO Jia-qi. Generalized solution of the singularly perturbed boundary value problems for semilinear elliptic equation of higher order with two parameters[J]. 南开大学学报(自然科学版), 2014,47(2): 47-81.
|
[12] |
WANG Wei-gang, SHI Juan-rong, SHI Lan-fang, MO Jia-qi. The singularly perturbed solution of nonlinear nonlocal equation for higher order[J]. 南开大学学报(自然科学版), 2014,47(1): 13-18.
|
[13] |
许永红, 林万涛, 徐惠, 姚静荪, 莫嘉琪. 一类相对论转动动力学模型[J]. 兰州大学学报(自然科学版), 2012,48(1): 100-103.(XU Yong-hong, LIN Wan-tao, XU Hui, YAO Jing-sun, MO Jia-qi. A class of rotational relativistic rotation dynamic model[J]. Journal Lanzhou University(Natural Sciences),2012,48(1): 100-103.(in Chinese))
|
[14] |
SHI Lan-fang, CHEN Cai-sheng, ZHOU Xian-chun. The extended auxiliary equation method for the KdV equation with variable coefficients[J]. Chinese Physics B,2011,20(10):100507.
|
[15] |
石兰芳, 林万涛, 温朝晖, 莫嘉琪. 一类奇摄动Robin问题的内部冲击波解[J]. 应用数学学报, 2013,36(1): 108-114.(SHI Lan-fang, LIN Wan-tao, WEN Zhao-hui, MO Jia-qi. Internal shock solution for a class of singularly perturbed Robin problems[J]. Acta Mathematicae Applicatae Sinica,2013,36(1): 108-114.(in Chinese))
|
[16] |
MO Jia-qi, LIN Wan-tao. A class of nonlinear singularly perturbed problems for reaction diffusion equations with boundary perturbation[J]. Acta Mathematicae Applicatae Sinica,2006,22(1): 27-32.
|
[17] |
MO Jia-qi. A class of singularly perturbed differential-difference reaction diffusion equation[J]. Advance in Mathematics,2009,38(2): 227-231.
|
[18] |
MO Jia-qi, LIN Wan-tao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. Journal of Systems Science and Complexity,2008,20(1): 119-128.
|
[19] |
MO Jia-qi. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China Ser G,2009,52(7): 1007-1010.
|
[20] |
MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chinese Physics B,2010,19(10): 100203.
|
[21] |
MO Jia-qi. Approximate solution of homotopic mapping to solitary wave for generalized nonlinear KdV system[J].Chinese Physics Letters,2009,26(1): 010204.
|
[22] |
MO Jia-qi, LIN Wan-tao, WANG Hui. Variational iteration solving method of a sea-air oscillator model for the ENSO[J]. Progress in Natural Science,2007,17(2): 230-232.
|
[23] |
MO Jia-qi, LIN Wan-tao. Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climate[J]. Journal of Systems Science and Complexity, 2011,24 (2): 271-276.
|
[24] |
MO Jia-qi. Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters[J]. Chinese Physics B,2010,19(1): 010203.
|