[1] |
Pauli W. On the Hamiltonian structure of non-local field theories[J]. II Nuovo Cimento,1953,10(5): 648-667.
|
[2] |
Martin J L. Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1959, 251(1267): 536-542.
|
[3] |
Maschke B M J, Ortega R, Van der Schaft A J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation[C]// Tampa, FL: Proceedings of CDC, 1998: 3599-3604.
|
[4] |
CHENG Dai-zhan, XI Zai-rong, LU Qiang, MEI Sheng-wei. Geometric structure of a general Hamiltonian control system and its application[J]. Science in China Series E: Technological Sciences,2000,43(4): 365-379.
|
[5] |
张素英, 邓子辰. 广义Hamilton系统的保结构算法[J]. 计算力学学报, 2005,22(1): 47-50.(ZHANG Su-ying, DENG Zi-chen. An algorithm for preserving structure of generalized Hamilton system[J]. Chinese Journal of Computational Mechanics,2005,22(1): 47-50.(in Chinese))
|
[6] |
贾利群, 郑世旺. 带有附加项的广义Hamilton系统的Mei对称性[J]. 物理学报, 2006,55(8): 3829-3832.(JIA Li-qun, ZHENG Shi-wang. Mei symmetry of generalized Hamilton systems with additional terms[J]. Acta Physica Sinica,2006,55(8): 3829-3832.(in Chinese))
|
[7] |
姜文安, 罗绍凯. 广义Hamilton系统的Mei对称性导致的Mei守恒量[J]. 物理学报, 2011,60(6): 060201.(JIANG Wen-an, LUO Shao-kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system[J]. Acta Physica Sinica,2011,60(6): 060201.(in Chinese))
|
[8] |
Jiang W A, Luo S K. Stability for manifolds of equilibrium states of generalized Hamiltonian system[J]. Meccanica,2012,47(2): 379-383.
|
[9] |
Jiang W A, Luo S K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J]. Nonlinear Dynamics,2012,67(1): 475-482.
|
[10] |
梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京: 北京理工大学出版社, 2004.(MEI Feng-xiang. Symmetries and Conserved Quantities of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2004.(in Chinese))
|
[11] |
刘畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman守恒量[J]. 物理学报, 2008,57(11): 6709-6713.(LIU Chang, LIU Shi-xing, MEI Feng-xiang, GUO Yong-xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems[J].Acta Physica Sinica,2008,57(11): 6709-6713.(in Chinese))
|
[12] |
李继彬, 赵晓华, 刘正荣. 广义哈密顿系统理论及其应用[M]. 北京: 科学出版社, 1994.(LI Ji-bin, ZHAO Xiao-hua, LIU Zheng-rong. Theory and Application of the Generalized Hamilton System [M]. Beijing: Science Press, 1994.(in Chinese))
|
[13] |
Olver P J. Applications of Lie Groups to Differential Equations [M]. Berlin: Springer-Verlag, 1986.
|
[14] |
Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry [M]. Berlin: Springer-Verlag, 1994.
|
[15] |
梅凤翔. 广义Hamilton系统的Lie对称性与守恒量[J]. 物理学报, 2003,52(5): 1048-1050.(MEI Feng-xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system[J]. Acta Physica Sinica,2003,52(5): 1048-1050.(in Chinese))
|
[16] |
SHANG Mei, MEI Feng-xiang. Integrals of generalized Hamilton systems with additional terms[J]. Chinese Physics B,2005,14(9): 1707-1709.
|
[17] |
Hirsch M W, Smale S, Devaney R L. Differential Equations, Dynamical Systems, and an Introduction to Chaos [M].Singapore: Elsevier, 2008.
|