留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶振子方程基于变分迭代的近似解析解序列

鲍四元 邓子辰

鲍四元, 邓子辰. 分数阶振子方程基于变分迭代的近似解析解序列[J]. 应用数学和力学, 2015, 36(1): 48-60. doi: 10.3879/j.issn.1000-0887.2015.01.004
引用本文: 鲍四元, 邓子辰. 分数阶振子方程基于变分迭代的近似解析解序列[J]. 应用数学和力学, 2015, 36(1): 48-60. doi: 10.3879/j.issn.1000-0887.2015.01.004
BAO Si-yuan, DENG Zi-chen. The Approximate Analytical Solution Sequence for Fractional Oscillation Equations Based on the Fractional Variational Iteration Method[J]. Applied Mathematics and Mechanics, 2015, 36(1): 48-60. doi: 10.3879/j.issn.1000-0887.2015.01.004
Citation: BAO Si-yuan, DENG Zi-chen. The Approximate Analytical Solution Sequence for Fractional Oscillation Equations Based on the Fractional Variational Iteration Method[J]. Applied Mathematics and Mechanics, 2015, 36(1): 48-60. doi: 10.3879/j.issn.1000-0887.2015.01.004

分数阶振子方程基于变分迭代的近似解析解序列

doi: 10.3879/j.issn.1000-0887.2015.01.004
基金项目: 国家自然科学基金(11202146);江苏省青蓝工程
详细信息
    作者简介:

    鲍四元(1980—),男,安徽人,副教授(通讯作者. E-mail: bsiyuan@126.com);邓子辰(1964—),男,辽宁人,教授,博士生导师(E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: O175.14;O321

The Approximate Analytical Solution Sequence for Fractional Oscillation Equations Based on the Fractional Variational Iteration Method

Funds: The National Natural Science Foundation of China(11202146)
  • 摘要: 在粘弹性介质中的阻尼振动中引入分数阶微分算子,建立分数阶非线性振动方程.使用了分数阶变分迭代法(FVIM),推导了Lagrange乘子的若干种形式.对线性分数阶阻尼方程,分别对齐次方程和正弦激励力的非齐次方程应用FVIM得到近似解析解序列.以含激励的Bagley-Torvik方程为例,给出不同分数阶次的位移变化曲线.研究了振子运动与方程中分数阶导数阶次的关系,这可由不同分数阶次下记忆性的强弱来解释.计算方法上,与常规的FVIM相比,引入小参数的改进变分迭代法能够大大扩展问题的收敛区段.最后,以一个含分数导数的Van der Pol方程为例说明了FVIM方法解决非线性分数阶微分问题的有效性和便利性.
  • [1] Kilbas A A, Srivastava H M, Trujillo J J.Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier, 2006.
    [2] 陈文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.(CHEN Wen, SUN Hong-guang, LI Xi-cheng.Modeling Using the Fractional Derivative in Mechanics and Engineering Problems [M]. Beijing: Science Press, 2010.(in Chinese))
    [3] 徐明瑜, 谭文长. 中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J]. 中国科学(G辑: 物理学、力学、天文学), 2006,36(3): 225-238.(XU Ming-yu, TAN Wen-chang. Intermediate processes and critical phenomena—the theory, method, development of fractional operator and its application in modern mechanics[J].Science in China(G Series: Pysica, Mechanica & Astronomica),2006,36(3): 225-238.(in Chinese))
    [4] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京: 科学出版社, 2011.(GUO Bo-ling, PU Xue-ke, HUANG Feng-hui.Fractional Partial Differential Equations and Their Numerical Solutions [M]. Beijing: Science Press, 2011.(in Chinese))
    [5] LIAO Shi-jun. A short review on the homotopy analysis method in fluid mechanics[J].Journal of Hydrodynamics, Series B,2010,22(5): 882-884.
    [6] Duan J S, Rach R, Buleanu D, Wazwaz A M. A review of the Adomian decomposition method and its applications to fractional differential equations[J].Communications in Fractional Calculus,2012,3(2): 73-99.
    [7] HE Ji-huan, WU Xu-hong. Variational iteration method: new development and applications[J].Computers & Mathematics With Applications,2007,54(7/8): 881-894.
    [8] Huang Y-J, Liu H-K. A new modification of the variational iteration method for Van der Pol equations[J].Applied Mathematical Modelling,2013,37(16/17): 8118-8130.
    [9] GENG Fa-zhan. A modified variational iteration method for solving Riccati differential equations[J].Computers & Mathematics With Applications,2010,60(7): 1868-1872.
    [10] Ghorbani A. Toward a new analytical method for solving nonlinear fractional differential equations[J].Computer Methods in Applied Mechanics and Engineering,2008,197(49/50): 4173-4179.
    [11] Abassy T A. Modified variational iteration method (non-homogeneous initial value problem)[J].Mathematical and Computer Modelling,2012,55(3/4): 1222-1232.
    [12] Altintan D, Ugur O. Solution of initial and boundary value problems by the variational iteration method[J].Journal of Computational and Applied Mathematics, Part B,2014,259: 790-797.
    [13] 沈淑君, 刘发旺. 解分数阶Bagley-Torvik方程的一种计算有效的数值方法[J]. 厦门大学学报(自然科学版), 2004,43(3): 306-311.(SHEN Shu-jun, LIU Fa-wang. A computat ionally effective numerical method for the fractional order Bagley-Torvik equation[J].Journal of Xiamen University (Natural Science),2004,43(3): 306-311.(in Chinese))
    [14] 廖少锴, 张卫. 非线性分数阶微分振子的动力学研究[J]. 振动工程学报, 2007,20(5): 459-467.(LIAO Shao-kai, ZHANG wei. Dynamics of nonlinear fractional differential oscillator[J].Journal of Vibration Engineering,2007,20(5): 459-467.(in Chinese))
    [15] 曹军义, 谢航, 蒋庄德. 分数阶阻尼Duffing系统的非线性动力学特性[J]. 西安交通大学学报, 2009,43(3): 50-54.(CAO Jun-yi, XIE Hang, JIANG Zhuang-de. Nonlinear dynamics of Duffing system with fractional order damping[J].Journal of Xi’an Jiaotong University,2009,43(3): 50-54.(in Chinese))
    [16] 王振滨, 曹广益, 朱新坚. 分数阶系统状态空间描述的数值算法[J]. 控制理论与应用, 2005,22(1): 101-105, 109.(WANG Zhen-bin, CAO Guang-yi, ZHU Xin-jian. A numerical algorithm for the state-space representation of fractional order systems[J].Control Theory & Applications,2005,22(1): 101-105, 109.(in Chinese))
    [17] LI Chang-pin, DENG Wei-hua. Remarks on fractional derivatives[J].Applied Mathematics and Computation,2007,187(2): 777-784.
    [18] 申永军, 杨绍普, 邢海军. 分数阶Duffing振子的超谐共振[J]. 力学学报. 2012,44(4): 762-768.(SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Super-harmonic resonance of fractional-order Duffing oscillator[J].Chinese Journal of Theoretical and Applied Mechanics,2012,44(4): 762-768.(in Chinese))
    [19] Plfalvi A. Efficient solution of a vibration equation involving fractional derivatives[J].International Journal of Non-Linear Mechanics,2010,45(2): 169-175.
    [20] Wang Z H, Wang X. General solution of the Bagley-Torvik equation with fractional-order derivative[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(5): 1279-1285.
    [21] 刘艳芹. 一类分数阶非线性振子的特性研究[J]. 计算机工程与应用, 2012,48(16): 30-32.(LIU Yan-qin. Study on properties of fractional nonlinear oscillator equations[J].Computer Engineering and Applications,2012,48(16): 30-32.(in Chinese))
    [22] 鲍四元, 邓子辰. 分数阶Fornberg-Whitham方程及其改进方程的变分迭代解[J]. 应用数学和力学, 2013,34(12): 1236-1246.(BAO Si-yuan, DENG Zi-chen. Variational iteration solutions for fractional Fornberg-Whitham equation and its modified equation[J].Applied Mathematics and Mechanics,2013,34(12): 1236-1246.(in Chinese))
    [23] WU Guo-cheng, Baleanu D. New applications of the variational iteration method-from differential equations to q-fractional difference equations[J].Advances in Difference Equations,2013,21: 1-16.
    [24] Tatari M, Dehghan M. On the convergence of He’s variational iteration method[J].Journal of Computational and Applied Mathematics,2007,207(1): 121-128.
    [25] WEN Zhi-wu, YI Jie, LIU Hong-liang. Convergence analysis of variational iteration method for caputo fractional differential equations[C]// Communications in Computer and Information Science,AsiaSim 2012, 2012: 296-307.
    [26] Khuri S A, Sayfy A. Variational iteration method: Green’s functions and fixed point iterations perspective[J].Applied Mathematics Letters,2014,32: 28-34.
    [27] Barari A, Omidvar M, Ghotbi A R, Ganji D D. Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations[J].Acta Applicandae Mathematicae,2008,104(2): 161-171.
    [28] Merdan M, Gokdogan A, Yildirim A. On numerical solution to fractional non-linear oscillatory equations[J].Meccanica,2013,48(5): 1201-1213.
  • 加载中
计量
  • 文章访问数:  1580
  • HTML全文浏览量:  190
  • PDF下载量:  1192
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-30
  • 修回日期:  2014-11-27
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回