留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限温度下线性谐振子晶格的分子动力学模拟

刘白伊郦 唐少强

刘白伊郦, 唐少强. 有限温度下线性谐振子晶格的分子动力学模拟[J]. 应用数学和力学, 2015, 36(1): 61-69. doi: 10.3879/j.issn.1000-0887.2015.01.005
引用本文: 刘白伊郦, 唐少强. 有限温度下线性谐振子晶格的分子动力学模拟[J]. 应用数学和力学, 2015, 36(1): 61-69. doi: 10.3879/j.issn.1000-0887.2015.01.005
LIU Bai-yi-li, TANG Shao-qiang. Molecular Dynamics Simulation of Linear Harmonic Lattices at Finite Temperature[J]. Applied Mathematics and Mechanics, 2015, 36(1): 61-69. doi: 10.3879/j.issn.1000-0887.2015.01.005
Citation: LIU Bai-yi-li, TANG Shao-qiang. Molecular Dynamics Simulation of Linear Harmonic Lattices at Finite Temperature[J]. Applied Mathematics and Mechanics, 2015, 36(1): 61-69. doi: 10.3879/j.issn.1000-0887.2015.01.005

有限温度下线性谐振子晶格的分子动力学模拟

doi: 10.3879/j.issn.1000-0887.2015.01.005
基金项目: 国家自然科学基金(11272009)
详细信息
    作者简介:

    刘白伊郦(1991—),女,四川人,博士生(E-mail: lbyili@pku.edu.cn);唐少强(1970—),男,江苏苏州人,教授(通讯作者. E-mail: maotang@pku.edu.cn).

  • 中图分类号: O39

Molecular Dynamics Simulation of Linear Harmonic Lattices at Finite Temperature

Funds: The National Natural Science Foundation of China(11272009)
  • 摘要: 基于双向界面条件和声子热浴,提出了一种新的热流输入方法,该方法未引入任何耗散因子或经验参数,能在局域的空间和时间上实现有限温度下的原子模拟.对于一维线性谐振子晶格,采用双向界面条件作为系统的边界,目的是为了让热流能从外界输入系统,同时允许内部的波动自由地传出,从而实现系统中能量的动态平衡.通过数值计算发现,双向界面条件能让正方向的波完整地输入,同时还能抑制反方向的波的输入,因此,边界条件可以起到行波的二极管的作用.声子热浴的正则模态能很好地描述原子的热振动,通过推导可将正则模态分解为正方向和反方向的输入波,取正方向的波来构造热源项.数值算例表明,热流输入方法对于线性谐振子链非常有效,系统能快速地达到预期的温度,并且能够维持在稳定的状态,同时,还能很好地处理有限温度下的非热运动.
  • [1] Liu W K, Karpov E G, Park H S.Nano Mechanics and Materials: Theory, Multi-Scale Methods and Applications[M]. John Wiley & Sons, Ltd, 2006.
    [2] Dupuy L M, Tadmor E B, Miller R E, Phillips R. Finite-temperature quasicontinuum: molecular dynamics without all the atoms[J].Phys Rev Lett,2005,95(6): 060202.
    [3] Mathew N, Picu R C, Bloomfield M. Concurrent coupling of atomistic and continuum models at finite temperature[J].Computer Methods in Applied Mechanics and Engineering,2011,200(5/8): 765-773.
    [4] XIANG Mei-zhen, CUI Jun-zhi, LI Bo-wen, TIAN Xia. Atom-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales[J].Science China: Physics, Mechanics & Astronomy,2012,55(6): 1125-1137.
    [5] Jiang H, Huang Y, Hwang K C. A finite-temperature continuum theory based on interatomic potentials[J].Journal of Engineering Materials and Technology,2005,127(4): 408-416.
    [6] Lepri S, Livi R, Politi A. Thermal conduction in classical low-dimensional lattices[J].Physics Reports,2003,377(1): 1-80.
    [7] Berendsen H J C, Postma J P M, Van Gunsteren W F, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath[J].The Journal of Chemical Physics,1984,81(8): 3684-3690.
    [8] Bussi G, Parrinello M. Accurate sampling using Langevin dynamics[J].Physical Review E,2007,75: 056707.
    [9] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J].The Journal of Chemical Physics,1980,72(4): 2384-2393.
    [10] Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J].The Journal of Chemical Physics,1984,81(1): 511-519.
    [11] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J].Physical Review A,1985,31: 1695.
    [12] Karpov E G, Park H S, Liu W K. A phonon heat bath approach for the atomistic and multiscale simulation of solids[J].International Journal for Numerical Methods in Engineering,2007,70(3): 351-378.
    [13] Wang X, Tang S. Matching boundary conditions for lattice dynamics[J].International Journal for Numerical Methods in Engineering,2013,93(12): 1255-1285.
    [14] TANG Shao-qiang. A two-way interfacial condition for lattice simulations[J].Adv Appl Math Mech,2010,2(1): 45-55.
    [15] Born M, Huang K.Dynamical Theory of Crystal Lattices [M]. Oxford: Clarendon, 1954.
  • 加载中
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  83
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-11-02
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回