[1] |
Liu W K, Karpov E G, Park H S.Nano Mechanics and Materials: Theory, Multi-Scale Methods and Applications[M]. John Wiley & Sons, Ltd, 2006.
|
[2] |
Dupuy L M, Tadmor E B, Miller R E, Phillips R. Finite-temperature quasicontinuum: molecular dynamics without all the atoms[J].Phys Rev Lett,2005,95(6): 060202.
|
[3] |
Mathew N, Picu R C, Bloomfield M. Concurrent coupling of atomistic and continuum models at finite temperature[J].Computer Methods in Applied Mechanics and Engineering,2011,200(5/8): 765-773.
|
[4] |
XIANG Mei-zhen, CUI Jun-zhi, LI Bo-wen, TIAN Xia. Atom-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales[J].Science China: Physics, Mechanics & Astronomy,2012,55(6): 1125-1137.
|
[5] |
Jiang H, Huang Y, Hwang K C. A finite-temperature continuum theory based on interatomic potentials[J].Journal of Engineering Materials and Technology,2005,127(4): 408-416.
|
[6] |
Lepri S, Livi R, Politi A. Thermal conduction in classical low-dimensional lattices[J].Physics Reports,2003,377(1): 1-80.
|
[7] |
Berendsen H J C, Postma J P M, Van Gunsteren W F, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath[J].The Journal of Chemical Physics,1984,81(8): 3684-3690.
|
[8] |
Bussi G, Parrinello M. Accurate sampling using Langevin dynamics[J].Physical Review E,2007,75: 056707.
|
[9] |
Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J].The Journal of Chemical Physics,1980,72(4): 2384-2393.
|
[10] |
Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J].The Journal of Chemical Physics,1984,81(1): 511-519.
|
[11] |
Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J].Physical Review A,1985,31: 1695.
|
[12] |
Karpov E G, Park H S, Liu W K. A phonon heat bath approach for the atomistic and multiscale simulation of solids[J].International Journal for Numerical Methods in Engineering,2007,70(3): 351-378.
|
[13] |
Wang X, Tang S. Matching boundary conditions for lattice dynamics[J].International Journal for Numerical Methods in Engineering,2013,93(12): 1255-1285.
|
[14] |
TANG Shao-qiang. A two-way interfacial condition for lattice simulations[J].Adv Appl Math Mech,2010,2(1): 45-55.
|
[15] |
Born M, Huang K.Dynamical Theory of Crystal Lattices [M]. Oxford: Clarendon, 1954.
|