留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不动点方法求解非线性Falkner-Skan流动方程

许丁 谢公南

许丁, 谢公南. 基于不动点方法求解非线性Falkner-Skan流动方程[J]. 应用数学和力学, 2015, 36(1): 78-86. doi: 10.3879/j.issn.1000-0887.2015.01.007
引用本文: 许丁, 谢公南. 基于不动点方法求解非线性Falkner-Skan流动方程[J]. 应用数学和力学, 2015, 36(1): 78-86. doi: 10.3879/j.issn.1000-0887.2015.01.007
XU Ding, XIE Gong-nan. Application of the Fixed Point Method to Solve the Nonlinear Falkner-Skan Flow Equation[J]. Applied Mathematics and Mechanics, 2015, 36(1): 78-86. doi: 10.3879/j.issn.1000-0887.2015.01.007
Citation: XU Ding, XIE Gong-nan. Application of the Fixed Point Method to Solve the Nonlinear Falkner-Skan Flow Equation[J]. Applied Mathematics and Mechanics, 2015, 36(1): 78-86. doi: 10.3879/j.issn.1000-0887.2015.01.007

基于不动点方法求解非线性Falkner-Skan流动方程

doi: 10.3879/j.issn.1000-0887.2015.01.007
基金项目: 国家自然科学基金(11102150);中央高校基本科研业务费专项资金
详细信息
    作者简介:

    许丁(1980—),男,西安人,讲师,博士(通讯作者. E-mail: dingxu@mail.xjtu.edu.cn).

  • 中图分类号: O351;TB126

Application of the Fixed Point Method to Solve the Nonlinear Falkner-Skan Flow Equation

Funds: The National Natural Science Foundation of China(11102150)
  • 摘要: Falkner-Skan流动方程描述绕楔面的流动,该方程具有很强的非线性.首先通过引入变换式,将原半无限大区域上的流动问题转化为有限区间上的两点边值问题.接着基于泛函分析中的不动点理论,采用不动点方法求解两点边值问题从而得到FalknerSkan流动方程的解.最后将不动点方法给出的结果和文献中的数值结果相比较,发现不动点方法得到的结果具有很高的精度,并且解的精度很容易通过迭代而不断得到提高.表明不动点方法是一种求解非线性微分方程行之有效的方法.
  • [1] Wang C Y. Exact solutions of the unsteady Navier-Stokes equations[J].Applied Mechanics Reviews,1989,42(11S): S269-S282.
    [2] Wang C Y. Exact solutions of the steady-state Navier-Stokes equations[J].Annual Review of Fluid Mechanics,1991,23: 159-177.
    [3] Falkner V M, Skan S W. Some approximate solutions of the boundary layer equations[J].Philosophical Magazine,1931,12: 865-896.
    [4] White F M.Viscous Fluid Flow [M]. New York: McGraw-Hill, 1991.
    [5] Schlichting H, Gersten K.Boundary-Layer Theory [M]. Springer Verlag, 2000.
    [6] Blasius H. Grenzschichten in flüssigkeiten mit kleiner reibung[J].Z Math Phys,1908,56: 1-37.
    [7] Hiemenz K. Die grenzchicht an einem in den gleichformingen flussigkeitsstrom eingetauchten geraden kreiszylinder[J].Dinglers Polytech J,1911,326: 321-410.
    [8] Hartree D R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer[J].Mathematical Proceedings of the Cambridge Philosophical Society,1937,33(2): 223-239.
    [9] Asaithambi A. A finite-difference method for the Falkner-Skan equation[J].Applied Mathematics and Computation,1998,92(2/3): 135-141.
    [10] Fazio R. Blasius problem and Falkner-Skan model: T-pfer’s algorithm and its extension[J].Computers & Fluids,2013,〖STHZ〗73: 202-209.
    [11] Boyd J P. The Blasius function: computations before computers, the value of tricks, undergraduate projects, and open research problems[J].SIAM Review,2008,50(4): 791-804.
    [12] Boyd J P. The Blasius function in the complex plane[J].Experimental Mathematics,1999,8(4): 381-394.
    [13] LIAO Shi-jun. A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate[J].Journal of Fluid Mechanics,1999,385: 101-128.
    [14] Motsa S S, Sibanda P. An efficient numerical method for solving Falkner-Skan boundary layer flows[J].International Journal for Numerical Methods in Fluids,2012,69(2): 499-508.
    [15] Marinca V, Ene R D, Marinca B. Analytic approximate solution for Falkner-Skan equation[J].The Scientific World Journal,2014,2014: 617453.
    [16] Yun B I. New approximate analytical solutions of the Falkner-Skan equation[J].Journal of Applied Mathematics,2012,2012: 170802.
    [17] XU Ding, XU Jing-lei, XIE Gong-nan. Revisiting Blasius flow by fixed point method[J].Abstract and Applied Analysis,2014,2014: 953151.
    [18] Zeidler E.Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems[M]. Springer, 1986.
    [19] XU Ding, GUO Xin. Fixed point analytical method for nonlinear differential equations[J].Journal of Computational and Nonlinear Dynamics,2013,8(1): 011005.
    [20] XU Ding, GUO Xin. Application of fixed point method to obtain semi-analytical solution to Blasius flow and its variation[J].Applied Mathematics and Computation,2013,224: 791-802.
    [21] XU Ding, WANG Xian, XIE Gong-nan. Spectral fixed point method for nonlinear oscillation equation with periodic solution[J].Mathematical Problems in Engineering,2013,2013: 538716.
    [22] 郭欣, 王娴, 许丁, 谢公南. 混合层无粘稳定性分析的Legendre级数解[J]. 应用数学和力学, 2013,34(8): 782-794.(GUO Xin, WANG Xian, XU Ding, XIE Gong-nan. A Legendre series solution to Rayleigh stability equation of mixing layer[J].Applied Mathematics and Mechanics,2013,34(8): 782-794.(in Chinese))
    [23] 赵学端, 廖其奠. 粘性流体力学[M]. 北京: 机械工业出版社,1992.(ZHAO Xue-duan, LIAO Qi-dian.Visocus Fluid Flow [M]. Beijing: China Machine Press, 1992.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1357
  • HTML全文浏览量:  124
  • PDF下载量:  1132
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-16
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回