[1] |
Wang C Y. Exact solutions of the unsteady Navier-Stokes equations[J].Applied Mechanics Reviews,1989,42(11S): S269-S282.
|
[2] |
Wang C Y. Exact solutions of the steady-state Navier-Stokes equations[J].Annual Review of Fluid Mechanics,1991,23: 159-177.
|
[3] |
Falkner V M, Skan S W. Some approximate solutions of the boundary layer equations[J].Philosophical Magazine,1931,12: 865-896.
|
[4] |
White F M.Viscous Fluid Flow [M]. New York: McGraw-Hill, 1991.
|
[5] |
Schlichting H, Gersten K.Boundary-Layer Theory [M]. Springer Verlag, 2000.
|
[6] |
Blasius H. Grenzschichten in flüssigkeiten mit kleiner reibung[J].Z Math Phys,1908,56: 1-37.
|
[7] |
Hiemenz K. Die grenzchicht an einem in den gleichformingen flussigkeitsstrom eingetauchten geraden kreiszylinder[J].Dinglers Polytech J,1911,326: 321-410.
|
[8] |
Hartree D R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer[J].Mathematical Proceedings of the Cambridge Philosophical Society,1937,33(2): 223-239.
|
[9] |
Asaithambi A. A finite-difference method for the Falkner-Skan equation[J].Applied Mathematics and Computation,1998,92(2/3): 135-141.
|
[10] |
Fazio R. Blasius problem and Falkner-Skan model: T-pfer’s algorithm and its extension[J].Computers & Fluids,2013,〖STHZ〗73: 202-209.
|
[11] |
Boyd J P. The Blasius function: computations before computers, the value of tricks, undergraduate projects, and open research problems[J].SIAM Review,2008,50(4): 791-804.
|
[12] |
Boyd J P. The Blasius function in the complex plane[J].Experimental Mathematics,1999,8(4): 381-394.
|
[13] |
LIAO Shi-jun. A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate[J].Journal of Fluid Mechanics,1999,385: 101-128.
|
[14] |
Motsa S S, Sibanda P. An efficient numerical method for solving Falkner-Skan boundary layer flows[J].International Journal for Numerical Methods in Fluids,2012,69(2): 499-508.
|
[15] |
Marinca V, Ene R D, Marinca B. Analytic approximate solution for Falkner-Skan equation[J].The Scientific World Journal,2014,2014: 617453.
|
[16] |
Yun B I. New approximate analytical solutions of the Falkner-Skan equation[J].Journal of Applied Mathematics,2012,2012: 170802.
|
[17] |
XU Ding, XU Jing-lei, XIE Gong-nan. Revisiting Blasius flow by fixed point method[J].Abstract and Applied Analysis,2014,2014: 953151.
|
[18] |
Zeidler E.Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems[M]. Springer, 1986.
|
[19] |
XU Ding, GUO Xin. Fixed point analytical method for nonlinear differential equations[J].Journal of Computational and Nonlinear Dynamics,2013,8(1): 011005.
|
[20] |
XU Ding, GUO Xin. Application of fixed point method to obtain semi-analytical solution to Blasius flow and its variation[J].Applied Mathematics and Computation,2013,224: 791-802.
|
[21] |
XU Ding, WANG Xian, XIE Gong-nan. Spectral fixed point method for nonlinear oscillation equation with periodic solution[J].Mathematical Problems in Engineering,2013,2013: 538716.
|
[22] |
郭欣, 王娴, 许丁, 谢公南. 混合层无粘稳定性分析的Legendre级数解[J]. 应用数学和力学, 2013,34(8): 782-794.(GUO Xin, WANG Xian, XU Ding, XIE Gong-nan. A Legendre series solution to Rayleigh stability equation of mixing layer[J].Applied Mathematics and Mechanics,2013,34(8): 782-794.(in Chinese))
|
[23] |
赵学端, 廖其奠. 粘性流体力学[M]. 北京: 机械工业出版社,1992.(ZHAO Xue-duan, LIAO Qi-dian.Visocus Fluid Flow [M]. Beijing: China Machine Press, 1992.(in Chinese))
|