留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无限深水中具有指数密度变率的周期性永形内波渐进解析解

邹丽 宗智 王振 赵勇 梁辉

邹丽, 宗智, 王振, 赵勇, 梁辉. 无限深水中具有指数密度变率的周期性永形内波渐进解析解[J]. 应用数学和力学, 2015, 36(1): 99-109. doi: 10.3879/j.issn.1000-0887.2015.01.009
引用本文: 邹丽, 宗智, 王振, 赵勇, 梁辉. 无限深水中具有指数密度变率的周期性永形内波渐进解析解[J]. 应用数学和力学, 2015, 36(1): 99-109. doi: 10.3879/j.issn.1000-0887.2015.01.009
ZOU Li, ZONG Zhi, WANG Zhen, ZHAO Yong, LIANG Hui. Analytical Solutions of Periodic Stationary Internal Waves in Infinitely Deep Water With Exponential Vertical Density Distribution[J]. Applied Mathematics and Mechanics, 2015, 36(1): 99-109. doi: 10.3879/j.issn.1000-0887.2015.01.009
Citation: ZOU Li, ZONG Zhi, WANG Zhen, ZHAO Yong, LIANG Hui. Analytical Solutions of Periodic Stationary Internal Waves in Infinitely Deep Water With Exponential Vertical Density Distribution[J]. Applied Mathematics and Mechanics, 2015, 36(1): 99-109. doi: 10.3879/j.issn.1000-0887.2015.01.009

无限深水中具有指数密度变率的周期性永形内波渐进解析解

doi: 10.3879/j.issn.1000-0887.2015.01.009
基金项目: 国家重点基础研究发展计划(973计划)(2013CB036101);国家自然科学基金(51109031; 51379033; 51221961; 51309040; 51279030,51239002)
详细信息
    作者简介:

    邹丽(1981—),女,辽宁盘锦人,副教授,博士(通讯作者. Tel: +86-411-84706373; E-mail: lizou@dlut.edu.cn).

  • 中图分类号: O242.1

Analytical Solutions of Periodic Stationary Internal Waves in Infinitely Deep Water With Exponential Vertical Density Distribution

Funds: The National Basic Research Program of China (973 Program)(2013CB036101);The National Natural Science Foundation of China(51109031; 51379033; 51221961; 51309040; 51279030,51239002)
  • 摘要: 采用同伦分析方法研究了一系列有限振幅的周期深水驻波问题.水密度在垂直方向的分布可以是变化的,假设为指数连续分布.提出一种新形式的偏微分方程作为辅助方程,获得解的新的表达形式来满足底部的边界条件和无限大的刚性假设.给出了解的表达式中系数的递推关系和周期海洋内波形成的永久驻波的显式表达式.得到垂直方向和水平方向的全局收敛解,揭示了密度变量和内波幅度间的关系.同伦分析方法对求解具有指数密度率周期性的永形波解是一致有效的.
  • [1] Keulegan G H.Characteristics of internal solitary waves[J].Journal of Research of the National Bureau of Standards,1953,51(3): 133-140.
    [2] Long R R. Solitary waves in the one- and two-fluid systems[J].Tellus,1956,8(4): 460-471.
    [3] Peters A S, Stoker J J. Solitary waves in liquids having non-constant density[J].Communications on Pure and Applied Mathematics,1960,13(1): 115-164.
    [4] Ter-Krikorov A M. Théorie exact des ondes longues stationnaires dans un liquide hétéogéne[J].J Mécanique,1963,2: 351-376.
    [5] Bona J L, Bose D K, Turner R E L. Finite amplitude steady waves in stratified fluids[J].Journal de Mathématiques Pures et Appliquées,1983,62(4): 389-439.
    [6] Benjamin T B. Internal waves of finite amplitude and permanent form[J].J Fluid Mech,1966,25(2): 241-270.
    [7] Benjamin T B. Internal waves of permanent form in fluids of great depth[J]. J Fluid Mech,1967,29(3): 559-592.
    [8] King S E, Carr M, Dritschel D G. The steady-state form of large-amplitude internal solitary waves[J].J Fluid Mech,2011,666: 477-505.
    [9] Helfrich K R, Melville W K. Longnonlinear internal waves[J].Annual Review of Fluid Mechanics,2006,38: 395-425.
    [10] Lamb H.Hydrodynamics[M]. Cambridge: Cambridge University Press, 1932.
    [11] Camassa R, Rusas P O, Saxena A, Tiron R. Fully nonlinear periodic internal waves in a two-fluid system of finite depth[J].Journal of Fluid Mechanics,2010,652: 259-298.
    [12] Broeck V J M, Turner R E L. Long periodic internal waves[J].Phys Fluids A,1929,4(9): 1929-1935.
    [13] Turner R E L. Internal waves in fluids with rapidly varying density[J].Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze,1981,8(4): 513-573.
    [14] Cheng J, Cang J, Liao S J. On the interaction of deep water waves and exponential shear currents[J].Z Angew Math Phys,2009,60(3): 450-478.
    [15] Long R R. Some aspects of the flow of stratified fluids[J].Tellus,1953,5(1): 42-57.
    [16] Dubreil-Jacotin M L. Sur les théorèmes d’existence relatifs aux ondes permanents périodiques à deux dimensions dans les liquids hétérogènes[J].Journal de Mathématiques Pures et Appliquées,1937,19: 43-67.
    [17] Abarbanel H D I, Holm D D, Marsden J E, Ratiu T. Richardson number criterion for the nonlinear stability of three-dimensional stratified flow[J].Physical Review Letters,1984,52(26): 2352-2355.
    [18] Liao S J.Beyond Perturbation: Introduction to the Homotopy Analysis Method [M]. London: Chapman & Hall/ CRC Press, 2003.
    [19] Schwartz L W. Computer extension and analytic continuation of Stoke’s expansion for gravity waves[J].J Fluid Mech,1974,62(3): 553-578.
  • 加载中
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  65
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-14
  • 修回日期:  2014-12-17
  • 刊出日期:  2015-01-15

目录

    /

    返回文章
    返回