留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面效应对偏场下介电高弹体表面波传播的影响

周伟建 陈伟球

周伟建, 陈伟球. 表面效应对偏场下介电高弹体表面波传播的影响[J]. 应用数学和力学, 2015, 36(2): 119-127. doi: 10.3879/j.issn.1000-0887.2015.02.001
引用本文: 周伟建, 陈伟球. 表面效应对偏场下介电高弹体表面波传播的影响[J]. 应用数学和力学, 2015, 36(2): 119-127. doi: 10.3879/j.issn.1000-0887.2015.02.001
ZHOU Wei-jian, CHEN Wei-qiu. Surface Effect on Propagation of Surface Waves in a Dielectric Elastomer Half Space Subject to Biasing Fields[J]. Applied Mathematics and Mechanics, 2015, 36(2): 119-127. doi: 10.3879/j.issn.1000-0887.2015.02.001
Citation: ZHOU Wei-jian, CHEN Wei-qiu. Surface Effect on Propagation of Surface Waves in a Dielectric Elastomer Half Space Subject to Biasing Fields[J]. Applied Mathematics and Mechanics, 2015, 36(2): 119-127. doi: 10.3879/j.issn.1000-0887.2015.02.001

表面效应对偏场下介电高弹体表面波传播的影响

doi: 10.3879/j.issn.1000-0887.2015.02.001
基金项目: 国家自然科学基金(11272281;11321202)
详细信息
    作者简介:

    周伟建(1990—),男,浙江人,博士生(E-mail: zhouweijian0607@126.com);陈伟球(1969—),男,江苏人,教授,博士生导师(通讯作者. E-mail: chenwq@zju.edu.cn).

  • 中图分类号: O426.2

Surface Effect on Propagation of Surface Waves in a Dielectric Elastomer Half Space Subject to Biasing Fields

Funds: The National Natural Science Foundation of China(11272281;11321202)
  • 摘要: 采用表面薄层模型考察偏场下介电高弹体的表面效应,针对不同边界情形,建立一阶等效边界条件.基于有限变形电弹性体的线性增量理论,利用Stroh公式和Ting方法,给出等效边界条件的严格推导过程.进一步利用Stroh公式,获得了偏场下具有表面效应的介电高弹体中表面波的频散方程.以可压缩Neo-Hookean介电高弹体为例,分析了表面效应对预变形和电学偏场作用下的介电高弹体表面波传播特性的影响.结果表明,通过施加适当的偏场,可以调控和优化纳米声表器件的性能.
  • [1] Mindlin R D. High frequency vibrations of plated, crystal plates[C]//Breuer S, Budiansky B, Demir H, Drucker D C, Alexander J M eds.Progress in Applied Mechanics: The Prager Anniversary Volume.The Macmillan Company, 1963: 73-84.
    [2] Tiersten H F. Elastic surface waves guided by thin films[J].Journal of Applied Physics,1969,40(2): 770-789.
    [3] Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces[J].Archive for Rational Mechanics and Analysis,1975,57(4): 291-323.
    [4] Rokhlin S I, Wang Y J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids[J].The Journal of the Acoustical Society of America,1991,89(2): 503-515.
    [5] Bovik P. On the modelling of thin interface layers in elastic and acoustic scattering problems[J].The Quarterly Journal of Mechanics and Applied Mathematics,1994,47(1): 17-42.
    [6] Niklasson A J, Datta S K, Dunn M L. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions[J].The Journal of the Acoustical Society of America,2000,108(3): 924-933.
    [7] Niklasson A J, Datta S K, Dunn M L. On ultrasonic guided waves in a thin anisotropic layer lying between two isotropic layers[J].The Journal of the Acoustical Society of America,2000,108(5): 2005-2011.
    [8] Chen W Q. Surface effect on Bleustein-Gulyaev wave in a piezoelectric half-space[J].Theoretical and Applied Mechanics Letters,2011,1(4): 041001.
    [9] Ting T C T. Mechanics of a thin anisotropic elastic layer and a layer that is bonded to an anisotropic elastic body or bodies[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science,2007,463(2085): 2223-2239.
    [10] Ting T C T. Steady waves in an anisotropic elastic layer attached to a half-space or between two half-spaces—a generalization of Love waves and Stoneley waves[J].Mathematics and Mechanics of Solids,2009,14(1/2): 52-71.
    [11] Gurtin M E, Murdoch A I. Effect of surface stress on wave propagation in solids[J].Journal of Applied Physics,2008,47(10): 4414-4421.
    [12] Murdoch A I. The effect of interfacial stress on the propagation of Stoneley waves[J].Journal of Sound and Vibration,1977,50(1): 1-11.
    [13] Murdoch A I. The propagation of surface waves in bodies with material boundaries[J].Journal of the Mechanics and Physics of Solids,1976,24(2): 137-146.
    [14] Chuang M Y. Green’s function for an anisotropic piezoelectric half-space bonded to a thin piezoelectric layer[J].Archives of Mechanics,2014,66(1): 3-17.
    [15] Dorfmann A, Ogden R W. Nonlinear electroelastostatics: incremental equations and stability[J].International Journal of Engineering Science,2010,48(1): 1-14.
    [16] Stroh A N. Dislocations and cracks in anisotropic elasticity[J].Philosophical Magazine,1958,3(30): 625-646.
    [17] Stroh A N. Steady state problems in anisotropic elasticity[J].Journal of Mathematical Physics,1962,41(2): 77-103.
    [18] Barnett D M, Lothe J. Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method[J].Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,1985,402(1822): 135-152.
    [19] Lothe J, Barnett D M. Existence of surface wave solutions for anisotropic elastic half-spaces with free surface[J].Journal of Applied Physics,1976,47(3): 428-433.
    [20] Lothe J, Barnett D M. Integral formalism for surface waves in piezoelectric crystals. Existence considerations[J].Journal of Applied Physics,1976,47(5): 1799-1807.
    [21] Ting T C T.Anisotropic Elasticity: Theory and Applications [M]. Oxford University Press, 1996.
    [22] Li W Y, Landis C M. Deformation and instabilities in dielectric elastomer composites[J].Smart Materials and Structures,2012,21(9): 094006.
    [23] Holzapfel G A.Nonlinear Solid Mechanics: A Continuum Approach for Engineering [M]. Wiley, 2000.
  • 加载中
计量
  • 文章访问数:  1326
  • HTML全文浏览量:  148
  • PDF下载量:  1008
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-20
  • 刊出日期:  2015-02-15

目录

    /

    返回文章
    返回