留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于L-D流动法则模糊弹粘塑性的有限变形分析

王喜刚 扶名福

王喜刚, 扶名福. 基于L-D流动法则模糊弹粘塑性的有限变形分析[J]. 应用数学和力学, 2015, 36(2): 128-139. doi: 10.3879/j.issn.1000-0887.2015.02.002
引用本文: 王喜刚, 扶名福. 基于L-D流动法则模糊弹粘塑性的有限变形分析[J]. 应用数学和力学, 2015, 36(2): 128-139. doi: 10.3879/j.issn.1000-0887.2015.02.002
WANG Xi-gang, FU Ming-fu. Fuzzy Elasto-Visco-Plasticity Analysis of Finite Deformation Based on the L-D Plastic Flow Rule[J]. Applied Mathematics and Mechanics, 2015, 36(2): 128-139. doi: 10.3879/j.issn.1000-0887.2015.02.002
Citation: WANG Xi-gang, FU Ming-fu. Fuzzy Elasto-Visco-Plasticity Analysis of Finite Deformation Based on the L-D Plastic Flow Rule[J]. Applied Mathematics and Mechanics, 2015, 36(2): 128-139. doi: 10.3879/j.issn.1000-0887.2015.02.002

基于L-D流动法则模糊弹粘塑性的有限变形分析

doi: 10.3879/j.issn.1000-0887.2015.02.002
基金项目: 国家自然科学基金(11362016);教育部博士学科点专项科研基金(20123601110001)
详细信息
    作者简介:

    王喜刚(1981—),男,吉林长岭人,讲师,博士(通讯作者. E-mail: fx_wxg@163.com).

  • 中图分类号: TU435

Fuzzy Elasto-Visco-Plasticity Analysis of Finite Deformation Based on the L-D Plastic Flow Rule

Funds: The National Natural Science Foundation of China(11362016)
  • 摘要: 为了进行岩土材料有限变形的动力分析,采用Green应变和第二类Kirchoff应力描述材料的几何非线性。将隶属度函数引入到屈服函数中,并采用L-D屈服准则,得到了基于L-D流动法则的模糊弹粘塑性本构模型。应用非线性有限元原理,得到了土样动三轴实验有限变形的数值结果,并与小变形的数值结果和土样的动三轴实验结果进行了对比。通过对比发现有限变形的结果更加接近动三轴的实验结果,且模糊弹粘塑性模型能很好地反映循环荷载作用下岩土的动力性质,是岩土动力分析的一种有效方法.
  • [1] Hill R. Some basic principles in the mechanics of solids without a natural time[J]. Journal of the Mechanics and Physics of Solids,1959,7(3): 209-225.
    [2] Hill R. Aspects invariance in solid mechanics[J]. Advances in Applied Mechanics,1978,18: 1-75.
    [3] 郭仲衡. 非线性弹性理论[M]. 北京: 科学出版社, 1980.(GUO Zhong-heng. Nonlinear Elastic Theory [M]. Beijing: Science Press, 1980.(in Chinese))
    [4] Guo Z H, Dubey R H. Basic aspects of Hill’s method in solid mechanics[J]. Solid Mechanics Archives,1984,9: 353-380.
    [5] Guo Z H, Man C S. Conjugate stress and tensor equation ∑mr=1 Um-rXUr-1=C[J]. International Journal of Solid and Structure,1992,29(16): 2063-2076.
    [6] 谢永利. 大变形固结理论及其有限元法[M]. 北京: 人民交通出版社, 1998.(XIE Yong-li. The Large Deformation Consolidation Theory and Finite Element Method [M]. Beijing: China Communications Press, 1998.(in Chinese))
    [7] 刘学军, 李明瑞, 黄文彬. 基于对数应变的有限变形弹塑性理论[J]. 中国农业大学学报, 2000,5(6): 34-39.(LIU Xue-jun, LI Ming-rui, HUANG Wen-bin. Finite deformation elasto-plastic theory based on logarithmic strain and consistent algorithm[J]. Journal of China Agricultural University,2000,5(6): 34-39.(in Chinese))
    [8] 刘学军, 李明瑞. 基于对数应变的有限变形弹塑性一致性算法[J]. 中国农业大学学报, 2001,6(2): 32-39.(LIU Xue-jun, LI Ming-rui. Finite deformation elasto plastic theory based on logarithmic strain and consistent algorithm[J]. Journal of China Agricultural University,2001,6(2): 32-39.(in Chinese))
    [9] 韩昌瑞. 有限变形理论及其在岩土工程中的应用[D]. 博士学位论文. 武汉: 中国科学院, 武汉岩土力学研究所, 2009.(HAN Chang-rui. The theory of finite deformation and its application in geotechnical engineering[D]. PhD Thesis. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2009.(in Chinese))
    [10] 扶名福, 徐秉业, 熊祝华. 模糊弹粘塑性问题及其解的唯一性和存在性[J]. 江西工业大学学报, 1992,14(1): 1-11.(FU Ming-fu, XU Bing-ye, XIONG Zhu-hua. Problem of fuzzy elasto-visto-plasticity and uniqueness and existence of the solution[J]. Journal of Jiangxi Polytechnic University,1992,14(1): 1-11.(in Chinese))
    [11] 扶名福, 熊祝华, 徐秉业. 球壳的模糊弹粘塑性分析[J]. 工程力学, 1994,11(2): 1-7.(FU Ming-fu, XIONG Zhu-hua, XU Bing-ye. Analysis of fuzzy elasto-visto-plasticity for spherical shell[J]. Engineering Mechanics,1994,11(2): 1-7.(in Chinese))
    [12] 殷有泉. 非线性有限元基础[M]. 北京: 北京大学出版社, 2007.(YIN You-quan. Nonlinear Finite Element Basis [M]. Beijing: Peking University Press, 2007.(in Chinese))
    [13] Hohenemser K, Prager W. Dynamics of Structures[M]. Stuttgart: Verlagsgruppe Georg von Holtzbrinck GmbH, 1961.
    [14] Perzyna P. Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics,1966,9(2): 243-377.
    [15] 刘健, 廖红建, 李杭州. 饱和重塑黄土动力反应的数值模拟[J]. 西安交通大学学报, 2008,42(1): 101-105.(LIU Jian, LIAO Hong-jian, LI Hang-zhou. Numerical simulation on dynamic response of saturated remolded loess soil[J]. Journal of Xi’an Jiaotong University,2008,42(1): 101-105.(in Chinese))
    [16] 王新栋, 邓子辰, 王艳, 冯国春. 基于时间有限元方法的旋转柔性叶片动力学响应分析[J]. 应用数学和力学, 2014,35(4): 353-363.(WANG Xin-dong, DENG Zi-chen, WANG Yan, FENG Guo-chun. Dynamic behavior analysis of rotational flexible blades based on time-fomain finite element method[J]. Applied Mathematics and Mechanics,2014,35(4): 353-363.(in Chinese))
    [17] 刘春梅, 钟柳强, 舒适, 肖映雄. 平面弹性问题自适应有限元方法的收敛性分析[J]. 应用数学和力学, 2014,35(9): 969-978.(LIU Chun-mei, ZHONG Liu-qiang, SHU Shi, XIAO Ying-xiong. Convergence of an adaptive finite element method for 2D elasticity problems[J]. Applied Mathematics and Mechanics,2014,35(9): 969-978.(in Chinese))
    [18] 庄茁. ABAQUS非线性有限元分析与实例[M]. 北京: 科学出版社, 2005.(ZHUANG Zhuo. Nonlinear Finite Element Analysis and Examples on ABAQUS [M]. Beijing: Science Press, 2005.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  144
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-11-22
  • 刊出日期:  2015-02-15

目录

    /

    返回文章
    返回