留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴对称Poisson方程的Trefftz有限元解法

刘博 王克用 王明红

刘博, 王克用, 王明红. 轴对称Poisson方程的Trefftz有限元解法[J]. 应用数学和力学, 2015, 36(2): 140-148. doi: 10.3879/j.issn.1000-0887.2015.02.003
引用本文: 刘博, 王克用, 王明红. 轴对称Poisson方程的Trefftz有限元解法[J]. 应用数学和力学, 2015, 36(2): 140-148. doi: 10.3879/j.issn.1000-0887.2015.02.003
LIU Bo, WANG Ke-yong, WANG Ming-hong. A Trefftz Finite Element Method for Solving Axisymmetric Poisson’s Equations[J]. Applied Mathematics and Mechanics, 2015, 36(2): 140-148. doi: 10.3879/j.issn.1000-0887.2015.02.003
Citation: LIU Bo, WANG Ke-yong, WANG Ming-hong. A Trefftz Finite Element Method for Solving Axisymmetric Poisson’s Equations[J]. Applied Mathematics and Mechanics, 2015, 36(2): 140-148. doi: 10.3879/j.issn.1000-0887.2015.02.003

轴对称Poisson方程的Trefftz有限元解法

doi: 10.3879/j.issn.1000-0887.2015.02.003
基金项目: 上海高校青年骨干教师国外访问学者计划
详细信息
    作者简介:

    刘博(1990—),男,河南南阳人,硕士生(E-mail: 708989488@qq.com);王克用(1975—),男,河北唐山人,讲师,博士(通讯作者. E-mail: keyong.wang@hotmail.com).

  • 中图分类号: O242.21;O242.82

A Trefftz Finite Element Method for Solving Axisymmetric Poisson’s Equations

  • 摘要: 将径向基函数应用到一类轴对称Poisson方程的数值求解中,提出了一种Trefftz有限元计算格式.非0右端项将问题的特解引入Trefftz单元域内场,致使单元刚度方程涉及区域积分.利用径向基函数对特解近似处理,可消除区域积分,从而保持Trefftz有限元法只含边界积分的优势.为获得特解,选取求解域内所有单元的节点和形心作为基本插值点,而在求解域之外构造一个虚拟边界,在其上布置一定数目的虚拟点作为额外插值点.数值算例验证了该方法的有效性和可行性.
  • [1] Jirousek J, Leon N. A powerful finite element for plate bending[J]. Computer Methods in Applied Mechanics and Engineering,1977,12(1): 77-96.
    [2] Qin Q H. The Trefftz Finite and Boundary Element Method [M]. Southampton: WIT Press, 2000.
    [3] Qin Q H, Wang H. MATLAB and C Programming for Trefftz Finite Element Methods [M]. Boca Raton: CRC Press, 2008: 113-125.
    [4] Wang H, Qin Q H, Arounsavat D. Application of hybrid Trefftz finite element method to nonlinear problems of minimal surface[J]. International Journal for Numerical Methods in Engineering,2007,69(6): 1262-1277.
    [5] Cao L L, Wang H, Qin Q H. Fundamental solution based graded element model for steady-state heat transfer in FGM[J]. Acta Mechanica Solida Sinica,2012,25(4): 377-392.
    [6] Fu Z J, Qin Q H, Chen W. Hybrid-Trefftz finite element method for heat conduction in nonlinear functionally graded materials[J]. Engineering Computations: International Journal for Computer-Aided Engineering and Software,2011,28(5): 578-599.
    [7] Wang K Y, Li P C, Wang D Z. Trefftz-type FEM for solving orthotropic potential problems[J]. Latin American Journal of Solids and Structures,2014,11(14): 2537-2554.
    [8] Wang K Y, Zhang L Q, Li P C. A four-node hybrid-Trefftz annular element for analysis of axisymmetric potential problems[J]. Finite Elements in Analysis and Design,2012,60: 49-56.
    [9] 王克用, 黄争鸣, 李培超, 刘博. 轴对称正交各向异性位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013,34(5): 462-469.(WANG Ke-yong, HUANG Zheng-ming, LI Pei-chao, LIU Bo. Trefftz finite element analysis of axisymmetric potential problems in orthotropic media[J]. Applied Mathematics and Mechanics,2013,34(5): 462-469.(in Chinese))
    [10] Wang K, Mattheij R M M, ter Morsche H G. Alternative DRM formulations[J]. Engineering Analysis With Boundary Elements,2003,27(2): 175-181.
    [11] Tsai C C, Chen C S, Hsu T W. The method of particular solutions for solving axisymmetric polyharmonic and poly-Helmholtz equations[J]. Engineering Analysis With Boundary Elements,2009,33(12): 1396-1402.
    [12] Chen C S, Muleshkov A S, Golberg M A, Mattheij R M M. A mesh-free approach to solving the axisymmetric Poisson’s equation[J]. Numerical Methods for Partial Differential Equations,2005,21(2): 349-367.
  • 加载中
计量
  • 文章访问数:  1592
  • HTML全文浏览量:  235
  • PDF下载量:  1229
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-09
  • 修回日期:  2014-11-13
  • 刊出日期:  2015-02-15

目录

    /

    返回文章
    返回