留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄体结构温度场的高阶边界元分析

胡宗军 牛忠荣 程长征 周焕林

胡宗军, 牛忠荣, 程长征, 周焕林. 薄体结构温度场的高阶边界元分析[J]. 应用数学和力学, 2015, 36(2): 149-158. doi: 10.3879/j.issn.1000-0887.2015.02.004
引用本文: 胡宗军, 牛忠荣, 程长征, 周焕林. 薄体结构温度场的高阶边界元分析[J]. 应用数学和力学, 2015, 36(2): 149-158. doi: 10.3879/j.issn.1000-0887.2015.02.004
HU Zong-jun, NIU Zhong-rong, CHENG Chang-zheng, ZHOU Huan-lin. High-Order Boundary Element Analysis of Temperature Fields in Thin-Walled Structures[J]. Applied Mathematics and Mechanics, 2015, 36(2): 149-158. doi: 10.3879/j.issn.1000-0887.2015.02.004
Citation: HU Zong-jun, NIU Zhong-rong, CHENG Chang-zheng, ZHOU Huan-lin. High-Order Boundary Element Analysis of Temperature Fields in Thin-Walled Structures[J]. Applied Mathematics and Mechanics, 2015, 36(2): 149-158. doi: 10.3879/j.issn.1000-0887.2015.02.004

薄体结构温度场的高阶边界元分析

doi: 10.3879/j.issn.1000-0887.2015.02.004
基金项目: 国家自然科学基金(11272111;11372094)
详细信息
    作者简介:

    胡宗军(1975—),男,山东日照人,副教授,博士(通讯作者. E-mail: huzongjun_1975@163.com).

  • 中图分类号: O343.1

High-Order Boundary Element Analysis of Temperature Fields in Thin-Walled Structures

Funds: The National Natural Science Foundation of China(11272111;11372094)
  • 摘要: 分析了二维问题边界元法3节点二次单元的几何特征,区分和定义了源点相对高阶单元的Ⅰ型和Ⅱ型接近度.针对二维位势问题高阶边界元中奇异积分核,构造出具有相同Ⅱ型几乎奇异性的近似核函数,在几乎奇异积分单元上分离出积分核中主导的奇异函数部分.原积分核扣除其近似核函数后消除几乎奇异性,成为正则积分核函数,并采用常规Gauss数值方法计算该正则积分;对奇异核函数的积分推导出解析公式,从而建立了一种新的边界元法高阶单元几乎奇异积分半解析算法.应用该算法计算了二维薄体结构温度场算例,计算结果表明高阶单元半解析算法能充分发挥边界元法优势,显著提高计算精度.
  • [1] Bouzakis K D, Vidakis N. Prediction of the fatigue behavior of physically vapor deposited coatings in the ball-on-rod rolling contact fatigue test, using an elastic-plastic finite elements method simulation[J]. Wear,1997,206(1/2): 197-203.
    [2] Dobrzański L A, liwa A, Kwa〖KG-*4〗s〖DD(-*3/4〗′〖DD)〗ny W. Employment of the finite element method for determining stresses in coatings obtained on high-speed steel with the PVD process[J]. Journal of Materials Processing Technology,2005,164/165: 1192-1196.
    [3] 周焕林, 牛忠荣, 王秀喜. 薄体位势问题边界元法中的解析积分算法[J]. 力学季刊, 2003,24(3): 319-326.(ZHOU Huan-lin, NIU Zhong-rong, WANG Xiu-xi. An analytical integral algorithm in BEM for potential problems with thin bodies[J]. Chinese Quarterly of Mechanics,2003,24(3): 319-326.(in Chinese))
    [4] 张耀明, 谷岩, 袁飞, 李功胜. 涂层结构中温度场的边界元解[J]. 固体力学学报, 2011,32(2): 133-141.(ZHANG Yao-ming, GU Yan, YUAN Fei, LI Gong-sheng. Boundary element analysis of the temperature field in coating structures[J]. Acta Mechanica Solida Sinica,2011,32(2): 133-141.(in Chinese))
    [5] 谷岩, 张耀明, 李功胜. 精确几何单元下弹性薄体结构问题的边界元法分析[J]. 计算物理, 2011,28(3): 397-403.(GU Yan, ZHANG Yao-ming, LI Gong-sheng. Boundary element analysis of thin-walled structures in elasticity problems with exact geometrical representation[J]. Chinese Journal of Computational Physics,2011,28(3): 397-403.(in Chinese))
    [6] 李平, 张耀明. 热弹性问题直接边界元法中的边界层效应[J]. 山东理工大学学报(自然科学版), 2011,25(3): 1-5.(LI Ping, ZHANG Yao-ming. The boundary layer effect in the BEM of thermo elasticity problems with direct formulation[J]. Journal of Shandong University of Technology(Natural Science Edition), 2011,25(3): 1-5.(in Chinese))
    [7] 牛忠荣, 张晨利, 王秀喜. 边界元法分析狭长体结构[J]. 计算力学学报, 2003,20(4): 391-396.(NIU Zhong-rong, ZHANG Chen-li, WANG Xiu-xi. Boundary element analysis of the thin-walled structures[J]. Chinese Journal of Computational Mechanics,2003,20(4): 391-396.(in Chinese))
    [8] 张耀明, 刘召颜, 谷岩, 李功胜. 二维弹性问题边界元法中边界层效应问题的变换法[J]. 计算力学学报, 2010,27(5): 775-780.(ZHANG Yao-ming, LIU Zhao-yan, GU Yan, LI Gong-sheng. A transformation algorithm applied to boundary layer effect in BEM for elastic plane problems[J]. Chinese Journal of Computational Mechanics,2010,27(5): 775-780.(in Chinese))
    [9] 周焕林, 牛忠荣, 王秀喜. 位势问题边界元法中几乎奇异积分的正则化[J]. 应用数学和力学, 2003,24(10): 1069-1074.(ZHOU Huan-lin, NIU Zhong-rong, WANG Xiu-xi. Regularization of nearly singular integrals in the boundary element method of potential problems[J]. Applied Mathematics and Mechanics,2003,24(10): 1069-1074.(in Chinese))
    [10] GAO Xiao-wei, Davies T G. Adaptive integration in elasto-plastic boundary element analysis[J]. Journal of the Chinese Institute of Engineers,2000,23(3): 349-356.
    [11] 王静, 高效伟. 基于单元子分法的结构多尺度边界单元法[J]. 计算力学学报, 2010,27(2): 258-263.(WANG Jing, GAO Xiao-wei. Structural multi-scale boundary element method based on element subdivision technique[J]. Chinese Journal of Computational Mechanics,2010,27(2): 258-263.(in Chinese))
    [12] Ma H, Kamiya N. Domain supplemental approach to avoid boundary layer effect of BEM in elasticity[J]. Engineering Analysis With Boundary Elements,1999,23(3): 281-284.
    [13] Qin X Y, Zhang J M, Xie G Z, Zhou F L, Li G Y. A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element[J]. Journal of Computational and Applied Mathematics,2011,235(14): 4174-4186.
    [14] Johnston P R, Johnston B M, Elliott D. Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals[J]. Engineering Analysis With Boundary Elements,2013,37(4): 708-718.
    [15] Gu Y, Chen W, Zhang C Z. The sinh transformation for evaluating nearly singular boundary element integrals over high-order geometry elements[J]. Engineering Analysis With Boundary Elements,2013,37(2): 301-308.
    [16] 牛忠荣, 王左辉, 胡宗军, 周焕林. 二维边界元法中几乎奇异积分的解析法[J]. 工程力学, 2004,21(6): 113-117.(NIU Zhong-rong, WANG Zuo-hui, HU Zong-jun, ZHOU Huan-lin. Analytical algorithm for nearly singular integrals in two-dimensional boundary element analysis[J]. Engineering Mechanics,2004,21(6): 113-117.(in Chinese))
    [17] NIU Zhong-rong, CHENG Chang-zheng, ZHOU Huan-lin, HU Zong-jun. Analytic formulations for calculating nearly singular integrals in two-dimensional BEM[J]. Engineering Analysis With Boundary Elements,2007,31(12): 949-964.
    [18] 王有成. 工程中的边界元方法[M]. 北京: 中国水利电力出版社, 1996: 52-57.(WANG You-cheng. The Boundary Element Method in Engineering [M]. Beijing: China Water & Power Press, 1996: 52-57.(in Chinese))
    [19] Gao X W, Zhang C, Sladek G, Sladekc V. Fracture analysis of functionally graded materials by BEM[J]. Composites Science and Technology,2008,68(5): 1209-1215.
  • 加载中
计量
  • 文章访问数:  1030
  • HTML全文浏览量:  142
  • PDF下载量:  885
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-11-10
  • 刊出日期:  2015-02-15

目录

    /

    返回文章
    返回