[1] |
Yin Z, Montgomery D C, Clercx H J H. Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches” and “points”[J].Physics of Fluids,2003,15(7): 1937-1953.
|
[2] |
Joyce G R, Montgomery D C. Negative temperature states for the two-dimensional guiding-centre plasma[J].Journal of Plasma Physics,1973,10(1): 107-121.
|
[3] |
Montgomery D C, Joyce G R. Statistical mechanics of negative temperature states[J].Physics of Fluids,1974,17(6): 1139-1145.
|
[4] |
Book D L, Fisher S, McDonald B E. Steady-state distributions of interacting discrete vortices[J].Physics Review Letter,1975,34(1): 4-7.
|
[5] |
Pointin Y B, Lundgren T S. Statistical mechanics of two dimensional vortices in a bounded container[J].Physics of Fluids,1976,19(10): 1459-1470.
|
[6] |
Williamson J H. Statistical mechanics of a guiding-center plasma[J].Journal of Plasma Physics,1977,17(1): 85-92.
|
[7] |
Ting A C, Chen H H, Lee Y C. Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation[J].Physica D: Nonlinear Phenomena,1987,26(1/3): 37-66.
|
[8] |
Smith R A. Maximization of vortex entropy as an organizing principle of intermittent, decaying, two-dimensional turbulence[J].Physics Review A,1991,43(2): 1126-1129.
|
[9] |
Campbell L J, O’Neil K. Statistics of two-dimensional point vortices and high-energy vortex states[J].Journal of Statistical Physics,1991,65(3/4): 495-529.
|
[10] |
Kiessling M K H. Statistical mechanics of classical particles with logarithmic interactions[J].Communication on Pure and Applied Mathmatics,1993,46(1): 27-56.
|
[11] |
Matthaeus W H, Stribling W T, Martinez D, Oughton S, Montgomery D C. Decaying two-dimensional turbulence at very long times[J].Physica D: Nonlinear Phenomena,1991,51(1/3): 531-538.
|
[12] |
Matthaeus W H, Stribling W T, Martinez D, Oughton S, Montgomery D C. Selective decay and coherent vortices in two-dimensional incompressible turbulence[J].Physics Review Letter,1991,66(21): 2731-2734.
|
[13] |
Eyink G L, Spohn H. Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence[J].Journal of Statistical Physics,1993,70(3/4): 833-886.
|
[14] |
Montgomery D C, Matthaeus W H, Stribling W T, Martinez D, Oughton S. Relaxation in two dimensions and the “sinh-Poisson” equation[J].Physics of Fluids A,1992,4(1): 3-6.
|
[15] |
Montgomery D C, SHAN Xiao-wen, Matthaeus W H. Navier-Stokes relaxation to sinh-Poisson states at finite Reynolds numbers[J].Physics of Fluids A,1993,5(9): 2207-2216.
|
[16] |
LI Shuo-jun, Montgomery D C, Jones W B. Two-dimensional turbulence with rigid circular walls[J].Theoretical and Computational Fluid Dynamics,1997,9(3/4): 167-181.
|
[17] |
Kuvshinov B N, Schep T J. Double-periodic arrays of vortices[J].Physics of Fluids,2000,12(12): 3282-3284.
|
[18] |
Yin Z, Clercx H J H, Montgomery D C. An easily implemented task-based parallel scheme for the Fourier pseudo-spectral solver applied to 2D Navier-Stokes turbulence[J].Computers and Fluids,2004,33(4): 509-520.
|
[19] |
Yin Z. On final states of two-dimensional decaying turbulence[J].Physics of Fluids,2004,16(12): 4623-4634.
|
[20] |
Washington W M, Parkinson C L.An Introduction to Three-Dimensional Climate Modeling [M]. 2nd ed. Sausalito, California: University Science Books, 2005.
|
[21] |
Lin C C, Shu F H. On the spiral structure of disk galaxies[J].The Astrophysical Journal,1964,140: 646-655.
|
[22] |
Montgomery D C, Matthaeus W H. Oseen vortex as a maximum entropy state of a two dimensional fluid[J].Physics of Fluids,2011,23(7): 075104.
|
[23] |
Gallay T, Wayne C E. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[J].Communications in Mathematical Physics,2005,255(1): 97-129.
|
[24] |
Platte R B, Rossi L F, Mitchell T B. Using global interpolation to evaluate the Biot-Savart integral for deformable elliptical Gaussian vortex elements[J].SIAM Journal on Scientific Computing,2009,31(3): 2342-2360.
|
[25] |
Mariotti A, Legras B, Dritschel D. Vortex stripping and the erosion of coherent structures in two-dimensional flows[J].Physics of Fluids,1994,6(12): 3954-3962.
|
[26] |
YIN Zhao-hua. A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains[J].Journal of Computational Physics,2014,258: 371-380.
|
[27] |
TANG Tao. The Hermite spectral method for Gaussian-type functions[J].SIAM Journal on Scientific Computing,1993,14(3): 594-606.
|
[28] |
SHEN Jie, TANG Tao.Spectral and High-Order Methods With Applications [M]. Beijing: Science Press, 2006.
|
[29] |
Canuto C, Hussaini M, Quarteroni A, Zang T.Spectral Methods in Fluid Dynamics [M]. New York: Springer-Verlag, 1987: 84-85.
|
[30] |
Yin Z, Clercx H J H, Montgomery D C. An easily implemented task-based parallel scheme for the Fourier pseudospectral solver applied to 2D Navier-Stokes turbulence[J].Computer and Fluids,2004,33(4): 509-520.
|
[31] |
Yin Z, YUAN Li, TANG Tao. A new parallel strategy for two-dimensional incompressible flow simulations using pseudo-spectral methods[J].Journal of Computational Physics,2005,210(1): 325-341.
|