留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维无界自由衰减流的数值研究

尹兆华 D·C·蒙哥马利

尹兆华, D·C·蒙哥马利. 二维无界自由衰减流的数值研究[J]. 应用数学和力学, 2015, 36(2): 190-197. doi: 10.3879/j.issn.1000-0887.2015.02.008
引用本文: 尹兆华, D·C·蒙哥马利. 二维无界自由衰减流的数值研究[J]. 应用数学和力学, 2015, 36(2): 190-197. doi: 10.3879/j.issn.1000-0887.2015.02.008
YIN Zhao-hua, David C Montgomery. Numerical Simulations of 2D Free Decaying Flow in an Unbounded Domain[J]. Applied Mathematics and Mechanics, 2015, 36(2): 190-197. doi: 10.3879/j.issn.1000-0887.2015.02.008
Citation: YIN Zhao-hua, David C Montgomery. Numerical Simulations of 2D Free Decaying Flow in an Unbounded Domain[J]. Applied Mathematics and Mechanics, 2015, 36(2): 190-197. doi: 10.3879/j.issn.1000-0887.2015.02.008

二维无界自由衰减流的数值研究

doi: 10.3879/j.issn.1000-0887.2015.02.008
基金项目: 国家自然科学基金(11472283; 11172308)
详细信息
    作者简介:

    尹兆华(1973—),男,山东青岛人,副研究员,博士,硕士生导师(通讯作者. E-mail: zhaohua.yin@imech.ac.cn).

  • 中图分类号: O357.1

Numerical Simulations of 2D Free Decaying Flow in an Unbounded Domain

Funds: The National Natural Science Foundation of China(11472283; 11172308)
  • 摘要: 无界区域上的流体运动是流体力学中的热点和难点问题.采用传统的扩大计算区域算法和新发展的基于无界区域的Hermite基函数算法对二维无界区域的自由衰减流动进行研究. 结果发现,对于只存在相同符号涡的初始流场而言,两种方法都可以得出正确的结果;而对于正负涡都存在的初始流场,传统方法即便利用非常大的计算区域也无法进行正确的长时间模拟,但是新方法却能高效求解.对算例的Hermite算法数值模拟验证了理论解Oseen涡的存在.
  • [1] Yin Z, Montgomery D C, Clercx H J H. Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches” and “points”[J].Physics of Fluids,2003,15(7): 1937-1953.
    [2] Joyce G R, Montgomery D C. Negative temperature states for the two-dimensional guiding-centre plasma[J].Journal of Plasma Physics,1973,10(1): 107-121.
    [3] Montgomery D C, Joyce G R. Statistical mechanics of negative temperature states[J].Physics of Fluids,1974,17(6): 1139-1145.
    [4] Book D L, Fisher S, McDonald B E. Steady-state distributions of interacting discrete vortices[J].Physics Review Letter,1975,34(1): 4-7.
    [5] Pointin Y B, Lundgren T S. Statistical mechanics of two dimensional vortices in a bounded container[J].Physics of Fluids,1976,19(10): 1459-1470.
    [6] Williamson J H. Statistical mechanics of a guiding-center plasma[J].Journal of Plasma Physics,1977,17(1): 85-92.
    [7] Ting A C, Chen H H, Lee Y C. Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation[J].Physica D: Nonlinear Phenomena,1987,26(1/3): 37-66.
    [8] Smith R A. Maximization of vortex entropy as an organizing principle of intermittent, decaying, two-dimensional turbulence[J].Physics Review A,1991,43(2): 1126-1129.
    [9] Campbell L J, O’Neil K. Statistics of two-dimensional point vortices and high-energy vortex states[J].Journal of Statistical Physics,1991,65(3/4): 495-529.
    [10] Kiessling M K H. Statistical mechanics of classical particles with logarithmic interactions[J].Communication on Pure and Applied Mathmatics,1993,46(1): 27-56.
    [11] Matthaeus W H, Stribling W T, Martinez D, Oughton S, Montgomery D C. Decaying two-dimensional turbulence at very long times[J].Physica D: Nonlinear Phenomena,1991,51(1/3): 531-538.
    [12] Matthaeus W H, Stribling W T, Martinez D, Oughton S, Montgomery D C. Selective decay and coherent vortices in two-dimensional incompressible turbulence[J].Physics Review Letter,1991,66(21): 2731-2734.
    [13] Eyink G L, Spohn H. Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence[J].Journal of Statistical Physics,1993,70(3/4): 833-886.
    [14] Montgomery D C, Matthaeus W H, Stribling W T, Martinez D, Oughton S. Relaxation in two dimensions and the “sinh-Poisson” equation[J].Physics of Fluids A,1992,4(1): 3-6.
    [15] Montgomery D C, SHAN Xiao-wen, Matthaeus W H. Navier-Stokes relaxation to sinh-Poisson states at finite Reynolds numbers[J].Physics of Fluids A,1993,5(9): 2207-2216.
    [16] LI Shuo-jun, Montgomery D C, Jones W B. Two-dimensional turbulence with rigid circular walls[J].Theoretical and Computational Fluid Dynamics,1997,9(3/4): 167-181.
    [17] Kuvshinov B N, Schep T J. Double-periodic arrays of vortices[J].Physics of Fluids,2000,12(12): 3282-3284.
    [18] Yin Z, Clercx H J H, Montgomery D C. An easily implemented task-based parallel scheme for the Fourier pseudo-spectral solver applied to 2D Navier-Stokes turbulence[J].Computers and Fluids,2004,33(4): 509-520.
    [19] Yin Z. On final states of two-dimensional decaying turbulence[J].Physics of Fluids,2004,16(12): 4623-4634.
    [20] Washington W M, Parkinson C L.An Introduction to Three-Dimensional Climate Modeling [M]. 2nd ed. Sausalito, California: University Science Books, 2005.
    [21] Lin C C, Shu F H. On the spiral structure of disk galaxies[J].The Astrophysical Journal,1964,140: 646-655.
    [22] Montgomery D C, Matthaeus W H. Oseen vortex as a maximum entropy state of a two dimensional fluid[J].Physics of Fluids,2011,23(7): 075104.
    [23] Gallay T, Wayne C E. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[J].Communications in Mathematical Physics,2005,255(1): 97-129.
    [24] Platte R B, Rossi L F, Mitchell T B. Using global interpolation to evaluate the Biot-Savart integral for deformable elliptical Gaussian vortex elements[J].SIAM Journal on Scientific Computing,2009,31(3): 2342-2360.
    [25] Mariotti A, Legras B, Dritschel D. Vortex stripping and the erosion of coherent structures in two-dimensional flows[J].Physics of Fluids,1994,6(12): 3954-3962.
    [26] YIN Zhao-hua. A Hermite pseudospectral solver for two-dimensional incompressible flows on infinite domains[J].Journal of Computational Physics,2014,258: 371-380.
    [27] TANG Tao. The Hermite spectral method for Gaussian-type functions[J].SIAM Journal on Scientific Computing,1993,14(3): 594-606.
    [28] SHEN Jie, TANG Tao.Spectral and High-Order Methods With Applications [M]. Beijing: Science Press, 2006.
    [29] Canuto C, Hussaini M, Quarteroni A, Zang T.Spectral Methods in Fluid Dynamics [M]. New York: Springer-Verlag, 1987: 84-85.
    [30] Yin Z, Clercx H J H, Montgomery D C. An easily implemented task-based parallel scheme for the Fourier pseudospectral solver applied to 2D Navier-Stokes turbulence[J].Computer and Fluids,2004,33(4): 509-520.
    [31] Yin Z, YUAN Li, TANG Tao. A new parallel strategy for two-dimensional incompressible flow simulations using pseudo-spectral methods[J].Journal of Computational Physics,2005,210(1): 325-341.
  • 加载中
计量
  • 文章访问数:  975
  • HTML全文浏览量:  88
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-10-21
  • 刊出日期:  2015-02-15

目录

    /

    返回文章
    返回