[1] |
Theodorakopoulos D D, Niskos D E. Flexural vibrations of poroelastic plate[J].Acta Mech,1994,103(1/4): 191-203.
|
[2] |
Anke B, Martin S, Heinz A. A poroelastic Mindlin-plate[J].Proc Appl Math Mech,2003,3(1): 260-261.
|
[3] |
杨骁, 李丽. 不可压饱和多孔弹性梁、杆动力响应的数学模型[J]. 固体力学学报, 2006,27(2): 159-166.(YANG Xiao, LI Li. Mathematical model for dynamics of incompressible saturated poroelastic beam and rod[J].Acta Mechanica Solida Sinica,2006,27(2): 159-166.(in Chinese))
|
[4] |
FENG Kang. On difference schemes and symplectic geometry[C]// Proceeding of the 1984 Beijing Symposium on D D.Beijing: Science Press, 1984: 42-58.
|
[5] |
Marsden J E, Patriek G P, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs[J].Comm Math Phys,1998,199(2): 351-395.
|
[6] |
Marsden J E, Patriek G P, Shkoller S. Variational methods, multisymplectic geometry and mechanics[J].J Geom Phys,2001,38(2): 253-284.
|
[7] |
Bridges T J. Multi-symplectic structures and wave propagation[J].Math Proc Cambridge Philos Soc, 1997,121(1): 147-190.
|
[8] |
Bridges T J, Reich S. Multi-symplectic integrator: numerical schemes for Hamiltonian PDE that conserve symplecticity[J].Physics Letters A,2001,284(4/5): 184-193.
|
[9] |
Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J]. J Comput Phys,1999,157(2): 473-499.
|
[10] |
胡伟鹏, 邓子辰, 李文成. 膜自由振动的多辛方法[J]. 应用数学和力学, 2008,28(9): 1054-1062.(HU Wei-peng, DENG Zi-chen, LI Wen-cheng. Multi-symplectic methods for membrane free vibration equation[J].Applied Mathematics and Mechanics,2008,28(9): 1054-1062.(in Chinese))
|
[11] |
杨骁, 李丽. 轴向扩散下简支饱和多孔弹性梁的大挠度分析[J]. 固体力学学报, 2007,28(3): 313-317.(YANG Xiao, LI Li. Larger deflection analysis of simply supported saturated poroelastic beam[J].Acta Mechanica Solida Sinica,2007,28(3): 313-317.(in Chinese))
|
[12] |
周凤玺, 米海珍. 弹性地基上不可压含液饱和多孔弹性梁的自由振动[J]. 兰州理工大学学报, 2014,40(2): 118-122.(ZHOU Feng-xi, MI Hai-zhen. Free vibration of poroelastic beam with incompressible saturated liquid on elastic foundation[J].Journal of Lanzhou University of Technology,2014,40(2): 118-122.(in Chinese))
|
[13] |
欧阳煜, 张雅男. 集中荷载作用下饱和多孔Timoshenko简支梁的动力学响应[J]. 工程力学, 2012,29(11): 325-331.(OUYANG Yu, ZHANG Ya-nan. Dynamical behavior of simply-supported saturated poroelastic Timoshenko beam under a concentrated load[J].Engineering Mechanics,2012,29(11): 325-331.(in Chinese))
|
[14] |
YANG Xiao. Gurtin-type variational principles for dynamics of a non-local thermal equilibrium saturated porous medium[J].Acta Mech Solida Sin,2005, 18(1): 37-45.
|
[15] |
杨骁, 程昌钧. 流体饱和多孔介质的动力学Gurtin型变分原理和有限元模拟[J]. 固体力学学报, 2003,24(3): 267-276.(YANG Xiao, CHENG Chang-jun. Gurtin variational principle and finite element simulation for dynamical problems of fluid-saturated porous media[J].Acta Mechanica Solida Sinica,2003,24(3): 267-276.(in Chinese))
|