留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类广义非线性强阻尼扰动发展方程的行波解

冯依虎 石兰芳 汪维刚 莫嘉琪

冯依虎, 石兰芳, 汪维刚, 莫嘉琪. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015, 36(3): 315-324. doi: 10.3879/j.issn.1000-0887.2015.03.009
引用本文: 冯依虎, 石兰芳, 汪维刚, 莫嘉琪. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015, 36(3): 315-324. doi: 10.3879/j.issn.1000-0887.2015.03.009
FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, MO Jia-qi. Travelling Wave Solution to a Class of Generalized Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2015, 36(3): 315-324. doi: 10.3879/j.issn.1000-0887.2015.03.009
Citation: FENG Yi-hu, SHI Lan-fang, WANG Wei-gang, MO Jia-qi. Travelling Wave Solution to a Class of Generalized Nonlinear Strong-Damp Disturbed Evolution Equations[J]. Applied Mathematics and Mechanics, 2015, 36(3): 315-324. doi: 10.3879/j.issn.1000-0887.2015.03.009

一类广义非线性强阻尼扰动发展方程的行波解

doi: 10.3879/j.issn.1000-0887.2015.03.009
基金项目: 国家自然科学基金(11202106)
详细信息
    作者简介:

    冯依虎(1982—),男,安徽潜山人,讲师,硕士(E-mail: fengyihubzsz@163.com);莫嘉琪(1937—),男,浙江德清人,教授(通讯作者. E-mail: mojiaqi@mail.ahnu.edu.cn).

  • 中图分类号: O175.29

Travelling Wave Solution to a Class of Generalized Nonlinear Strong-Damp Disturbed Evolution Equations

Funds: The National Natural Science Foundation of China(11202106)
  • 摘要: 研究了一类非线性强阻尼广义扰动发展方程问题.它们在数学、力学、物理学等领域中广泛出现.首先,引入一个行波变换,把相应的偏微分方程问题转化为行波方程问题并求出原典型问题的精确解.再用小参数方法和引入伸长变量构造了问题的渐近解.最后, 用泛函分析的不动点理论证明了原非线性强阻尼广义扰动发展方程初值问题渐近行波解的存在性,并证明渐近解具有较高的精度和一致有效性.该文求得的渐近解是一个解析展开式, 所以它还可继续进行解析运算, 而单纯用数值模拟的方法是不行的.
  • [1] de Jager E M, JIANG Fu-ru.The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.
    [2] Barbu L, Morosanu G.Singularly Perturbed Boundary-Value Problem[M]. Basel: Birkhauserm Verlag AG, 2007.
    [3] McPhaden M J, Zhang D. Slowdown of the Meridional overturning circulation in the upper Pacific ocean[J]. Nature,2002,415: 603-608.
    [4] GU Dai-fang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J].Science,1997,275(7): 805-807.
    [5] Ramos M. On singular perturbation of superlinear elliptic systems[J].Journal of Mathematical Analysis and Applications,2009,352(1): 246-258.
    [6] D’Aprile T, Pistoia A. On the existence of some new positive interior spike solutions to a semilinear Neumann problem[J].Journal of Differential Equations,2010,248(3): 556-573.
    [7] Suzuki R. Asymptotic behavior of solutions of a semilinear heat equation with localized reaction[J].Advances in Difference Equations,2010,15(3/4): 283-314.
    [8] Kellogg R B, Kopteva N. A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J].Journal of Differential Equations,2010,248(1): 184-208.
    [9] Ei S-I, Kuwamura M, Morita Y. A variational approach to singular perturbation problems in reaction-diffusion systems[J].Physica D: Nonlinear Phenomena,2005,207(3/4): 171-219.
    [10] 张建文, 王旦霞, 吴润衡. 一类广义强阻尼Sine-Gordon方程的整体解[J]. 物理学报, 2008,57(4): 2021-2025.(ZHANG Jian-wen, WANG Dan-xia, WU Run-heng. Global solutions for a kind of generalized Sine-Gordon equation with strong damping[J].Acta Physica Sinica,2008,57(4): 2021-2025.(in Chinese))
    [11] MO Jia-qi. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J].Science in China, Physics, Mechanics & Astronomy(Series G), 2009,52(7): 1007-1010.
    [12] 莫嘉琪, 温朝晖. 一类具有转向点的三阶方程边值问题[J]. 应用数学和力学, 2010,31(8): 979-985.(MO Jia-qi, WEN Zhao-hui. A class of boundary value problems for third-order differential equation with a turning point[J].Applied Mathematics and Mechanics,2010,31(8): 979-985.(in Chinese))
    [13] MO Jia-qi, LIN Wan-tao. Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climate[J].Journal of Systems Science and Complexity,2011,24(2): 271-276.
    [14] MO Jia-qi, LIN Wan-tao, LIN Yi-hua. Asymptotic solution for the El Nino time delay sea-air oscillator model[J].Chinese Physics B,2011,20(7): 070205.
    [15] MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J].Communications in Theoretical Physics,2011,55(3): 387-390.
    [16] 汪维刚, 许永红, 石兰芳, 莫嘉琪. 一类双参数非线性高阶反应扩散方程的摄动解法[J]. 应用数学和力学, 2014,35(12): 1383-1391.(WANG Wei-gang, XU Yong-hong, SHI Lan-fang, MO Jia-qi. Perturbation method for a class of high-order nonlinear reaction diffusion equations with double parameters[J].Applied Mathematics and Mechanics,2014,35(12): 1383-1391.(in Chinese))
    [17] 史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014,35(9): 1046-1054.(SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a class of nonlinear strong-damp disturbed evolution equations[J].Applied Mathematics and Mechanics,2014,35(9): 1046-1054.(in Chinese))
    [18] 石兰芳, 陈贤峰, 韩祥临, 许永红, 莫嘉琪. 一类Fermi气体在非线性扰动机制中轨线的渐近表示[J]. 物理学报, 2014,63(6): 060204.(SHI Lan-fang, CHEN Xian-feng, HAN Xiang-lin, XU Yong-hong, MO Jia-qi. Asymptotic expressions of path curve for a class of Fermi gases in nonlinear disturbed mechanism[J].Acta Physica Sinica,2014,63(6): 060204.(in Chinese))
    [19] 石兰芳, 朱敏, 周先春, 汪维刚, 莫嘉琪. 一类非线性发展方程孤立子行波解[J]. 物理学报, 2014,63(13): 130201.(SHI Lan-fang, ZHU Min, ZHOU Xian-chun, WANG Wei-gang, MO Jia-qi. The solitary traveling wave solution for a class of nonlinear evolution equations[J].Acta Physica Sinica,2014,63(13): 130201.(in Chinese))
    [20] WANG Wei-gang, SHI Juan-rong, SHI Lan-fang, MO Jia-qi. The singularly perturbed solution of nonlinear nonlocal equation for higher order[J].Acta Scientiarum Naturalium Universitatis Nankaiensis(Natural Science Edition), 2014,47(1): 13-18.
    [21] 汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解[J]. 物理学报, 2014,63(11): 110204.(WANG Wei-gang, LIN Wan-tao, SHI Lan-fang, MO Jia-qi. Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system[J].Acta Physica Sinica,2014,63(11): 110204.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1339
  • HTML全文浏览量:  198
  • PDF下载量:  919
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-19
  • 修回日期:  2014-12-11
  • 刊出日期:  2015-03-15

目录

    /

    返回文章
    返回