留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半序度量空间中混合g-单调映射的四元重合点定理及其应用

徐文清 朱传喜 吴照奇

徐文清, 朱传喜, 吴照奇. 半序度量空间中混合g-单调映射的四元重合点定理及其应用[J]. 应用数学和力学, 2015, 36(3): 332-342. doi: 10.3879/j.issn.1000-0887.2015.03.011
引用本文: 徐文清, 朱传喜, 吴照奇. 半序度量空间中混合g-单调映射的四元重合点定理及其应用[J]. 应用数学和力学, 2015, 36(3): 332-342. doi: 10.3879/j.issn.1000-0887.2015.03.011
XU Wen-qing, ZHU Chuan-xi, WU Zhao-qi. Quadruple Coincidence Point Theorems for Mixed g-Monotone Mappings in Partially Ordered Metric Spaces and Their Applications[J]. Applied Mathematics and Mechanics, 2015, 36(3): 332-342. doi: 10.3879/j.issn.1000-0887.2015.03.011
Citation: XU Wen-qing, ZHU Chuan-xi, WU Zhao-qi. Quadruple Coincidence Point Theorems for Mixed g-Monotone Mappings in Partially Ordered Metric Spaces and Their Applications[J]. Applied Mathematics and Mechanics, 2015, 36(3): 332-342. doi: 10.3879/j.issn.1000-0887.2015.03.011

半序度量空间中混合g-单调映射的四元重合点定理及其应用

doi: 10.3879/j.issn.1000-0887.2015.03.011
基金项目: 国家自然科学基金(11361042;11326099;11071108;11461045); 江西省自然科学基金(20132BAB201001;20142BAB211016;2010GZS0147);江西省教育厅青年基金(GJJ13012)
详细信息
    作者简介:

    徐文清(1989—),男,江西丰城人,硕士生(通讯作者. E-mail: wen-qing-xu@163.com).

  • 中图分类号: O177.91;O211.3

Quadruple Coincidence Point Theorems for Mixed g-Monotone Mappings in Partially Ordered Metric Spaces and Their Applications

Funds: The National Natural Science Foundation of China(11361042;11326099;11071108;11461045)
  • 摘要: 在半序度量空间中, 建立了关于映射对F:X4Xg:X→Xα-可容许性和相容性的概念.在此基础上, 利用迭代方法,研究了完备半序度量空间中在α-ψ-压缩条件下满足混合g-单调性质的α-可容许相容映射对的四元重合点的存在唯一性,获得了一些新的结果.最后, 给出了两个例子作为主要结果的应用.结果推广和改进了近期相关文献中的不动点定理和重合点定理.
  • [1] 王亚琴, 曾六川. Banach空间中广义混合平衡问题, 变分不等式问题和不动点问题的混杂投影方法[J]. 应用数学和力学, 2011,32(2): 241-252.(WANG Ya-qin, ZENG Lu-chuan. Hybrid projection method for generalized mixed equilibrium problems, variational inequality problems and fixed point problems in Banach spaces[J]. Applied Mathematics and Mechanics,2011,32(2): 241-252.(in Chinese))
    [2] 张石生, 王雄瑞, 李向荣, 陈志坚. 分层不动点及变分不等式的粘性方法及应用[J]. 应用数学和力学, 2011,32(2): 232-240.(ZHANG Shi-sheng, WANG Xiong-rui, Joseph Lee H W, Chi Kin Chan. Viscosity method for hierarchical fixed point and variational inequalities with applications[J].Applied Mathematics and Mechanics,2011,32(2): 232-240.(in Chinese))
    [3] Ran A C M, Reurings M C B. A fixed point theorem in partially ordered sets and some applications to matrix equations[J].Proceedings of the American Mathematical Society,2004,132(5): 1435-1443.
    [4] Agarwal R P, El-Gebeily M A, O’Regan D. Generalized contractions in partially ordered metric spaces[J].Applicable Analysis,2008,87(1): 1-8.
    [5] Bhaskar G T, Lakshmikantham V. Fixed point theorems in partially ordered metric spaces and applications[J].Nonlinear Analysis,2006,65(7): 1379-1393.
    [6] Lakshmikantham V, Ciric L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces[J].Nonlinear Analysis,2009,70(12): 4341-4349.
    [7] Borcut M, Berinde V. Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces[J].Applied Mathematics and Computation,2012,218(10): 5929-5936.
    [8] LIU Xiao-lan. Quadruple fixed point theorems in partially ordered metric spaces with mixed g-monotone property[J].Fixed Point Theory and Applications,2013,2013. doi: 10.1186/1687-1812-2013-147.
    [9] Berinde V, Morcut M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces[J].Nonlinear Analysis,2011,74(15): 4889-4897.
    [10] Turkoglu D, Sangurlu M. Coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces[J].Fixed Point Theory Applications,2013,2013. doi: 10.1186/1687-1812-2013-348.
    [11] Nashine H K, Samet B, Vetro C. Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces[J].Mathematical and Computer Modelling,2011,54(1/2): 712-720.
    [12] Karapinar E, Berinde V. Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces[J].Banach Journal of Mathematical Analysis,2012,6(1): 74-89.
    [13] Karapinar E, Shatanawi W, Mustafa Z. Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces[J].Journal of Applied Mathematic,2012,2012. article ID 951912.
    [14] 刘展, 朱传喜. 半序空间中一类算子方程的可解性及应用[J]. 数学学报, 2009,52(6): 1182-1188.(LIU Zhan, ZHU Chuan-xi. Solvability theorems with applications of an operator equation in partial order space[J].Acta Mathematica Sinica,2009,52(6): 1182-1188.(in Chinese))
    [15] 尹建东. 半序空间中二元算子方程的可解性及应用[J]. 系统科学与数学, 2012,32(11): 1449-1458.(YIN Jian-dong. Solvablity of binary operator equations in partial ordered spaces and applications[J].Journal of System Science and Mathematical Science,2012,32(11): 1449-1458.(in Chinese))
    [16] 卜香娟. Banach空间中一类序压缩映射的不动点定理[J]. 纯粹数学与应用数学, 2012,28(3): 334-341.(BU Xiang-juan. Fixed point theorems for a class of ordered contraction mapping in ordered Banach spaces[J].Pure and Applied Mathematics,2012,28(3): 334-341.(in Chinese))
    [17] Samet B, Vetro C, Vetro P. Fixed point theorems for α-ψ-contractive type mappings[J].Nonlinear Analysis,2012,75(4): 2154-2165.
    [18] Mursaleen M, Mohiuddine S A, Agarwal R P. Coupled fixed point theorems for α-ψ-contractive type mappings in partially ordered metric spaces[J].Fixed Point Theory and Applications,2012,2012. doi: 10.1186/1687-1812-2012-228.
  • 加载中
计量
  • 文章访问数:  1030
  • HTML全文浏览量:  62
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-22
  • 修回日期:  2014-12-30
  • 刊出日期:  2015-03-15

目录

    /

    返回文章
    返回