留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热-力耦合原子-连续关联模型的框架及其算法

李辉 崔俊芝 李博文

李辉, 崔俊芝, 李博文. 热-力耦合原子-连续关联模型的框架及其算法[J]. 应用数学和力学, 2015, 36(4): 343-351. doi: 10.3879/j.issn.1000-0887.2015.04.001
引用本文: 李辉, 崔俊芝, 李博文. 热-力耦合原子-连续关联模型的框架及其算法[J]. 应用数学和力学, 2015, 36(4): 343-351. doi: 10.3879/j.issn.1000-0887.2015.04.001
LI Hui, CUI Jun-zhi, LI Bo-wen. A Thermo-Mechanical Coupling Atom-Continuum Coupled Model and Its Algorithm[J]. Applied Mathematics and Mechanics, 2015, 36(4): 343-351. doi: 10.3879/j.issn.1000-0887.2015.04.001
Citation: LI Hui, CUI Jun-zhi, LI Bo-wen. A Thermo-Mechanical Coupling Atom-Continuum Coupled Model and Its Algorithm[J]. Applied Mathematics and Mechanics, 2015, 36(4): 343-351. doi: 10.3879/j.issn.1000-0887.2015.04.001

热-力耦合原子-连续关联模型的框架及其算法

doi: 10.3879/j.issn.1000-0887.2015.04.001
基金项目: 国家重点基础研究发展计划(973计划)(2012CB025904)
详细信息
    作者简介:

    李辉(1988—), 女, 湖南人, 博士生(通讯作者. E-mail: lihui@lsec.cc.ac.cn);崔俊芝(1938—), 男, 河南人, 工程院院士, 研究员(E-mail: cjz@lsec.cc.ac.cn);李博文(1987—), 男, 江苏人, 研究员, 博士(E-mail: libowen@lsec.cc.ac.cn).

  • 中图分类号: O344.1

A Thermo-Mechanical Coupling Atom-Continuum Coupled Model and Its Algorithm

Funds: The National Basic Research Program of China (973 Program)(2012CB025904)
  • 摘要: 对热-力耦合的原子-连续关联模型进行了系统研究,给出了计及热-力耦合行为的金属微-纳米构件内材料的瞬态弹性常数,应力、应变、比热容等物理量的具体计算公式及其算法.利用原子运动中的“结构形变”部分来研究微-纳米尺度下多晶原子团簇的非均匀结构变形.将原子团簇晶格结构的变形与连续体的变形关联起来,在准简谐近似假设下,推导出依赖于微观结构变形和热振动的自由能密度、熵密度、内能密度表达式,从而给出了微-纳米尺度下的瞬态热-力学参数.
  • [1] Tadmor E B, Ortiz M. Phillips R. Quasicontinuum analysis of defects in solids[J].Philosophical Magazine A,1996,73(6): 1529-1563.
    [2] Miller R E, Tadmor E B. The quasicontinuum method: overview, applications and current directions[J].Journal of Computer-Aided Materials Design,2002,9(3):203-239.
    [3] Knap J, Ortiz M. An analysis of the quasicontinuum method[J].Journal of the Mechanics and Physics of Solids,2001,49(9): 1899-1923.
    [4] Kohlhoff S, Gumbsch P, Fishmeister H F. Crack propagation in bcc crystals studied with a combined finite-element and atomistic model[J].Philosophical Magazine A,1991,64(4): 851-878.
    [5] Liu B, Huang Y, Jiang H, Qu S, Hwang K C. The atomic-scale finite element method[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(17/20):1849-1864.
    [6] Liu B, Jiang H, Huang Y, Qu S, Yu M F, Hwang K C. Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes[J].Physical Review B,2005,72(3): 035435.
    [7] Rudd R E, Broughton J Q. Coarse-grained molecular dynamics and the atomic limit of finite elements[J].Physical Review B,1998,58(10): 5893-5896.
    [8] Rudd R E, Broughton J Q. Coarse-grained molecular dynamics: nonlinear finite elements and finite temperature[J].Physical Review B,2005,72(14): 144104.
    [9] Abraham F F, Broughtom J Q, Bernstein N, Kaxiras E. Spanning the length scales in dynamic simulation[J].Computers in Physics,1998,12(6): 538-546.
    [10] Wagner G J, Liu W K. Coupling of atomistic and continuum simulations using a bridging scale decomposition[J].Journal of Computational Physicas,2003,190(1): 249-274.
    [11] Park H S, Liu W K. An introduction and tutorial on multiple-scale analysis in solids[J].Computer Methods in Applied Mechanics and Engineering,2004,193(17/20): 1733-1772.
    [12] Liu W K, Park H S, Qian D, Karpov E G, Kadowaki H, Wagner G J. Bridging scale methods for nanomechanics and materials[J].Computer Methods in Applied Mechanics and Engineering,2006,195(13/16): 1407-1421.
    [13] Zhang X, Liu Y, Wang H. Smoothed molecular dynamics[CP]. US-China NSF Workshop and Summer Institute of Bio- and Nano-Mechanics and Applications(UCWSI2007), 2007.
    [14] Liu Y, Zhang X, Sze K Y, Wang M. Smoothed molecular dynamics for large step time integration[J].CMES: Computer Modeling in Engineering and Sciences,2007,20(3): 177-192.
    [15] LI Xian-tao, Weinan E. Multiscale modeling of the dynamics of solids at finite temperature[J].Journal of the Mechanics and Physics of Solids,2005,53(7): 1650-1685.
    [16] Eringen A C. Continuum mechanics at atomistic scale[J].Crystal Lattice Defects,1972,75: 109-130.
    [17] Eringen A C. Theory of nonlocal thermoelasticity[J].International Journal of Engineering Science,1974, 12(12): 1063-1077.
    [18] XIANG Mei-zhen, CUI Jun-zhi, LI Bo-wen, TIAN Xia. Atomi-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales[J].Science China Physics, Mechanics and Astronomy,2012,55(5): 1125-1137.
    [19] LI Bo-wen, CUI Jun-zhi, TIAN Xia, YU Xin-gang, XIANG Mei-zhen. The calculation of mechanical behavior for metallic devices at nano-scale based on atomic-continuum coupled model[J].Computational Material Science,2014,94: 73-84.
    [20] XIAO Shao-ping, YANG Wei-xuan. Temperature-related Cauchy-Born rule for multiscale modeling of crystalline solids[J].Computational Materials Science,2006,〖STHZ〗 37(3): 374-379.
    [21] Jiang H, Zhang P, Liu B, Huang Y, Geubelle P H, Gao H, Hwang K C. The effect of nanotube radius on the constitutive model for carbon nanotubes[J].Computational Materials Science,2003,28(3): 429-442.
    [22] Griffiths D J.Introduction to Quantum Mechanics [M]. New Jersey: Pearson Prentice Hall, 2004.
    [23] Greiner W, Neise L, Stocker H.Thermodynamics and Statistical Mechanics [M]. Springer, 2012.
    [24] Plimpton S, Crozier P, Thompson A. LAMMPS-large-scale atomic/molecular massively parallel simulaton[CP]. Sandia National Laboratories, 2007.
    [25] Gurtin M E, Fried E, Anand L.The Mechanics and Thermodynamics of Continua [M]. Cambridge University Press, 2010.
    [26] Kittel C.Introduction to Solid State Physics [M]. Wiley, 2005.
  • 加载中
计量
  • 文章访问数:  1468
  • HTML全文浏览量:  120
  • PDF下载量:  959
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2015-03-09
  • 刊出日期:  2015-04-15

目录

    /

    返回文章
    返回