留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用统一分析梁与有限节线法分析弹性薄壁截面构件

龚耀清 孙博 陈晓东

龚耀清, 孙博, 陈晓东. 用统一分析梁与有限节线法分析弹性薄壁截面构件[J]. 应用数学和力学, 2015, 36(4): 352-361. doi: 10.3879/j.issn.1000-0887.2015.04.002
引用本文: 龚耀清, 孙博, 陈晓东. 用统一分析梁与有限节线法分析弹性薄壁截面构件[J]. 应用数学和力学, 2015, 36(4): 352-361. doi: 10.3879/j.issn.1000-0887.2015.04.002
GONG Yao-qing, SUN Bo, CHEN Xiao-dong. Elastic Analysis of Arbitrary Thin-Walled Structural Members Based on the Unified Analytical Beam Model With the Finite Nodal Line Method[J]. Applied Mathematics and Mechanics, 2015, 36(4): 352-361. doi: 10.3879/j.issn.1000-0887.2015.04.002
Citation: GONG Yao-qing, SUN Bo, CHEN Xiao-dong. Elastic Analysis of Arbitrary Thin-Walled Structural Members Based on the Unified Analytical Beam Model With the Finite Nodal Line Method[J]. Applied Mathematics and Mechanics, 2015, 36(4): 352-361. doi: 10.3879/j.issn.1000-0887.2015.04.002

用统一分析梁与有限节线法分析弹性薄壁截面构件

doi: 10.3879/j.issn.1000-0887.2015.04.002
基金项目: 国家自然科学基金(51178164);河南省重点学科资助项目(62705/004)
详细信息
    作者简介:

    龚耀清(1956—),男,宁夏人,教授,博士(通讯作者. E-mail: gongyq@hpu.edu.cn).

  • 中图分类号: O341;TB301

Elastic Analysis of Arbitrary Thin-Walled Structural Members Based on the Unified Analytical Beam Model With the Finite Nodal Line Method

Funds: The National Natural Science Foundation of China(51178164)
  • 摘要: 传统薄壁截面梁理论不仅与梁的长细比有关,还强烈地依赖于其横截面的形状和荷载的作用方式.为了解决任意长细比、任意形状弹性薄壁截面杆状类结构构件或结构体系受任意荷载作用的力学分析问题,提出了一种新的梁模型——统一分析梁,一种结构数值分析新方法——有限节线法.利用统一分析梁模型和有限节线法不仅可以分析任意弹性薄壁杆状类结构构件的力学行为,而且当问题的性质与传统梁理论的前提条件一致时,会得出同样精度的解答.算例计算结果证明了统一分析梁的合理性与有限节线法的正确性.
  • [1] de Miranda S, Madeo A, Miletta R, Ubertini F. On the relationship of the shear deformable generalized beam theory with classical and non-classical theories[J].Thin-Walled Structures,2014,51(21/22): 3698-3709.
    [2] Schardt R P. Generalized beam theory—an adequate method for coupled stability problems[J].Thin-Walled Structures,1994,19(2/4): 161-180.
    [3] de Miranda S, Gutiérrez A, Miletta R, Ubertini F. A generalized beam theory with shear deformation[J].Thin-Walled Structures,2013,67: 88-100.
    [4] Vlasov V Z.Thin-Walled Elastic Beams [M]. Jerusalem: Monson, 1961: 1-493.
    [5] Popov E P, Nagarajan S, Lu Z A.Mechanics of Material [M]. Englewood Cliffs, New Jersey: Prentice-Hall Inc, 1976: 1-590.
    [6] Timoshenko S. Strength of Materials, Part I: Elementary Theory and Problems [M]. New Delhi: CBS Publishers & Distributors, 2004: 1-298.
    [7] El Fatmi R. Non-uniform warping including the effects of torsion and shear forces—part I: a general beam theory[J].International Journal of Solids and Structures,2007,44(18/19): 5912-5929.
    [8] El Fatmi R. Non-uniform warping including the effects of torsion and shear forces—part II: analytical and numerical applications[J].International Journal of Solids and Structures,2007,44(18/19): 5930-5952.
    [9] ZHANG Yuan-hai, LIN Li-xia. Shear lag analysis of thin-walled box girders based on a new generalized displacement[J].Engineering Structures,2014,61: 73-83.
    [10] Ascher U, Christiansen J, Russell R D. Collocation software for boundary-value ODEs[J]. ACM Trans Math Software,1981,7(2): 209-222.
    [11] YUAN Si. ODE conversion techniques and their applications in computational mechanics[J].Acta Mechanica Sinica,1991,7(3): 283-288.
    [12] YUANG Si, ZHANG Yi-guo. Solution of eigen problems in ODEs by standard ODE solvers[J].Earthquake Engineering and Engineering Vibration,1993,13(2): 94-102.
    [13] YUAN Si.The Finite Element Method of Lines [M]. New York, Beijing: Science Press, 1993: 1-420.
    [14] 包世华, 周坚. 薄壁杆件结构力学[M]. 北京:中国建筑工业出版社, 1991: 1-393.(BAO Shi-hua, ZHOU Jian.Mechanics of Thin-Walled Structures [M]. Beijing: China Architecture & Building Press, 1991: 1-393.(in Chinese))
  • 加载中
计量
  • 文章访问数:  851
  • HTML全文浏览量:  67
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-17
  • 修回日期:  2014-11-21
  • 刊出日期:  2015-04-15

目录

    /

    返回文章
    返回